General Information of Disease (ID: DISY55BU)

Disease Name Hutchinson-Gilford progeria syndrome
Synonyms
Hutchinson Gilford progeria syndrome; progeria syndrome, childhood-onset; progeria; HGPS; Hutchinson-Gilford progeria; Hutchinson-Gilford progeria syndrome; Hutchinson-Gilford disease; Hutchinson Gilford syndrome; premature senility syndrome
Disease Class LD2B: Premature ageing appearance
Definition
Hutchinson-Gilford progeria syndrome is a rare, fatal, autosomal dominant and premature aging disease, beginning in childhood and characterized by growth reduction, failure to thrive, a typical facial appearance (prominent forehead, protuberant eyes, thin nose with a beaked tip, thin lips, micrognathia and protruding ears) and distinct dermatologic features (generalized alopecia, aged-looking skin, sclerotic and dimpled skin over the abdomen and extremities, prominent cutaneous vasculature, dyspigmentation, nail hypoplasia and loss of subcutaneous fat).|Editor note: check wether subset prototype_pattern is appropriate
Disease Hierarchy
DIS3GF09: Progeria
DIS6SVEE: Syndromic disease
DISCPWH9: Autosomal recessive disease
DISFPEQA: Laminopathy
DISOTEY1: Primary osteolysis
DISY55BU: Hutchinson-Gilford progeria syndrome
ICD Code
ICD-11
ICD-11: LD2B
Disease Identifiers
MONDO ID
MONDO_0008310
MESH ID
D011371
UMLS CUI
C0033300
OMIM ID
176670
MedGen ID
46123
Orphanet ID
740
SNOMED CT ID
238870004

Drug-Interaction Atlas (DIA) of This Disease

Drug-Interaction Atlas (DIA)
This Disease is Treated as An Indication in 1 Approved Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
Lonafarnib DMGM2Z6 Approved Small molecular drug [1]
------------------------------------------------------------------------------------
This Disease is Treated as An Indication in 1 Clinical Trial Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
Progerinin DM21RQ5 Phase 2 NA [2]
------------------------------------------------------------------------------------

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 30 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
ZMPSTE24 OTUMYTEV Supportive Autosomal dominant [3]
ALDH18A1 OT6W40XU moderate Genetic Variation [13]
AMPD1 OTU17BCI moderate Biomarker [14]
ANK3 OTJ3IRBP Strong Biomarker [15]
BANF1 OTP7Z38L Strong Biomarker [16]
BUB1B OT8KME51 Strong Biomarker [17]
CTC1 OTRJY7QD Strong Genetic Variation [18]
ERCC4 OTFIOPG1 Strong Genetic Variation [19]
GOLGA6A OTHU9MRX Strong Altered Expression [20]
GTF2H5 OTRL219S Strong Genetic Variation [21]
H2AX OT18UX57 Strong Biomarker [20]
HIP1 OT7AKCFQ Strong Altered Expression [22]
ICMT OT8CNKBO Strong Biomarker [23]
ING1 OTEZBRKW Strong Genetic Variation [24]
LEMD2 OT0YLT7L Strong Genetic Variation [25]
MGME1 OTC5LPXX Strong Biomarker [26]
PLB1 OTZ6TTYV Strong Genetic Variation [27]
PRELP OT9EEBUJ Strong Biomarker [28]
PRPS1 OTN3A6CN Strong Altered Expression [29]
PYCR1 OTQHB52T Strong Genetic Variation [30]
ROBO3 OTPVG40S Strong Biomarker [31]
SMURF2 OT3TRVL7 Strong Biomarker [32]
SRSF5 OTC5WP98 Strong Altered Expression [33]
SRSF6 OTGLOSYE Strong Biomarker [34]
SUN1 OTIU8V4U Strong Biomarker [35]
TNPO1 OT7W2CM8 Strong Biomarker [36]
TPR OTUBBA4W Strong Biomarker [20]
HFM1 OTHV3EFE Definitive Biomarker [37]
LMNA OT3SG7ZR Definitive Autosomal dominant [38]
SPRTN OT01D5CE Definitive Biomarker [39]
------------------------------------------------------------------------------------
⏷ Show the Full List of 30 DOT(s)
This Disease Is Related to 8 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
SIRT6 TTUXYWF Limited Biomarker [4]
ALPL TTMR5UV Strong Biomarker [5]
FDPS TTIKWV4 Strong Biomarker [6]
GADD45B TTMDW9L Strong Altered Expression [7]
GGT1 TTZVT7O Strong Genetic Variation [8]
PLA2R1 TTHKW7D Strong Biomarker [9]
WRN TT2H5WQ Strong Genetic Variation [10]
XPA TTGT87E Strong Biomarker [11]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 DTT(s)
This Disease Is Related to 1 DME Molecule(s)
Gene Name DME ID Evidence Level Mode of Inheritance REF
NAT10 DEZV4AP Strong Biomarker [12]
------------------------------------------------------------------------------------

References

1 Drugs@FDA. U.S. Food and Drug Administration. U.S. Department of Health Human Services. 2020
2 ClinicalTrials.gov (NCT05847179) A Phase 2, Open-Label Study to Evaluate the Safety and Tolerability of Progerinin for the Treatment of Bone Mineral Density (BMD) Loss in Subjects With Typical Werner Syndrome. U.S.National Institutes of Health.
3 A homozygous ZMPSTE24 null mutation in combination with a heterozygous mutation in the LMNA gene causes Hutchinson-Gilford progeria syndrome (HGPS): insights into the pathophysiology of HGPS. Hum Mutat. 2006 Jun;27(6):524-31. doi: 10.1002/humu.20315.
4 Enhanced insulin sensitivity in skeletal muscle and liver by physiological overexpression of SIRT6.Mol Metab. 2015 Sep 25;4(11):846-56. doi: 10.1016/j.molmet.2015.09.003. eCollection 2015 Nov.
5 ATP-based therapy prevents vascular calcification and extends longevity in a mouse model of Hutchinson-Gilford progeria syndrome.Proc Natl Acad Sci U S A. 2019 Nov 19;116(47):23698-23704. doi: 10.1073/pnas.1910972116. Epub 2019 Nov 5.
6 Drug screening on Hutchinson Gilford progeria pluripotent stem cells reveals aminopyrimidines as new modulators of farnesylation.Cell Death Dis. 2016 Feb 18;7(2):e2105. doi: 10.1038/cddis.2015.374.
7 Are There Common Mechanisms Between the Hutchinson-Gilford Progeria Syndrome and Natural Aging?.Front Genet. 2019 May 15;10:455. doi: 10.3389/fgene.2019.00455. eCollection 2019.
8 Absence of Lamin A/C gene mutations in four Wiedemann-Rautenstrauch syndrome patients.Am J Med Genet A. 2009 Dec;149A(12):2695-9. doi: 10.1002/ajmg.a.33090.
9 Targeting the phospholipase A2 receptor ameliorates premature aging phenotypes.Aging Cell. 2018 Dec;17(6):e12835. doi: 10.1111/acel.12835. Epub 2018 Sep 14.
10 Differential stem cell aging kinetics in Hutchinson-Gilford progeria syndrome and Werner syndrome.Protein Cell. 2018 Apr;9(4):333-350. doi: 10.1007/s13238-018-0517-8. Epub 2018 Feb 23.
11 Progerin sequestration of PCNA promotes replication fork collapse and mislocalization of XPA in laminopathy-related progeroid syndromes.FASEB J. 2017 Sep;31(9):3882-3893. doi: 10.1096/fj.201700014R. Epub 2017 May 17.
12 Recent Advances on the Structure and Function of RNA Acetyltransferase Kre33/NAT10.Cells. 2019 Sep 5;8(9):1035. doi: 10.3390/cells8091035.
13 Cutis laxa, fat pads and retinopathy due to ALDH18A1 mutation and review of the literature.Eur J Paediatr Neurol. 2014 Jul;18(4):511-5. doi: 10.1016/j.ejpn.2014.01.003. Epub 2014 Feb 28.
14 ZMPSTE24 missense mutations that cause progeroid diseases decrease prelamin A cleavage activity and/or protein stability.Dis Model Mech. 2018 Jul 13;11(7):dmm033670. doi: 10.1242/dmm.033670.
15 Mood, stress and longevity: convergence on ANK3.Mol Psychiatry. 2016 Aug;21(8):1037-49. doi: 10.1038/mp.2016.65. Epub 2016 May 24.
16 Nuclear Organization in Stress and Aging.Cells. 2019 Jul 1;8(7):664. doi: 10.3390/cells8070664.
17 BubR1 allelic effects drive phenotypic heterogeneity in mosaic-variegated aneuploidy progeria syndrome.J Clin Invest. 2020 Jan 2;130(1):171-188. doi: 10.1172/JCI126863.
18 CTC1 mutations in a Brazilian family with progeroid features and recurrent bone fractures.Mol Genet Genomic Med. 2018 Nov;6(6):1148-1156. doi: 10.1002/mgg3.495. Epub 2018 Nov 4.
19 Physical interaction between SLX4 (FANCP) and XPF (FANCQ) proteins and biological consequences of interaction-defective missense mutations.DNA Repair (Amst). 2015 Nov;35:48-54. doi: 10.1016/j.dnarep.2015.09.022. Epub 2015 Sep 30.
20 A nuclear lamina-chromatin-Ran GTPase axis modulates nuclear import and DNA damage signaling.Aging Cell. 2019 Feb;18(1):e12851. doi: 10.1111/acel.12851. Epub 2018 Dec 19.
21 An Xpd mouse model for the combined xeroderma pigmentosum/Cockayne syndrome exhibiting both cancer predisposition and segmental progeria.Cancer Cell. 2006 Aug;10(2):121-32. doi: 10.1016/j.ccr.2006.05.027.
22 Increased expression of the Huntingtin interacting protein-1 gene in cells from Hutchinson Gilford Syndrome (Progeria) patients and aged donors.J Gerontol A Biol Sci Med Sci. 2003 Oct;58(10):B873-8. doi: 10.1093/gerona/58.10.b873.
23 Atomic structure of the eukaryotic intramembrane RAS methyltransferase ICMT.Nature. 2018 Jan 25;553(7689):526-529. doi: 10.1038/nature25439. Epub 2018 Jan 17.
24 The emerging role of alternative splicing in senescence and aging.Aging Cell. 2017 Oct;16(5):918-933. doi: 10.1111/acel.12646. Epub 2017 Jul 13.
25 The Discovery of a LEMD2-Associated Nuclear Envelopathy with Early Progeroid Appearance Suggests Advanced Applications for AI-Driven Facial Phenotyping.Am J Hum Genet. 2019 Apr 4;104(4):749-757. doi: 10.1016/j.ajhg.2019.02.021. Epub 2019 Mar 21.
26 Mice lacking the mitochondrial exonuclease MGME1 accumulate mtDNA deletions without developing progeria.Nat Commun. 2018 Mar 23;9(1):1202. doi: 10.1038/s41467-018-03552-x.
27 The role of lipid metabolism in aging, lifespan regulation, and age-related disease.Aging Cell. 2019 Dec;18(6):e13048. doi: 10.1111/acel.13048. Epub 2019 Sep 27.
28 PRELP, collagen, and a theory of Hutchinson-Gilford progeria.Ageing Res Rev. 2003 Jan;2(1):95-105. doi: 10.1016/s1568-1637(02)00044-2.
29 Next-Generation Sequencing and Quantitative Proteomics of Hutchinson-Gilford progeria syndrome-derived cells point to a role of nucleotide metabolism in premature aging.PLoS One. 2018 Oct 31;13(10):e0205878. doi: 10.1371/journal.pone.0205878. eCollection 2018.
30 Analyses of LMNA-negative juvenile progeroid cases confirms biallelic POLR3A mutations in Wiedemann-Rautenstrauch-like syndrome and expands the phenotypic spectrum of PYCR1 mutations.Hum Genet. 2018 Dec;137(11-12):921-939. doi: 10.1007/s00439-018-1957-1. Epub 2018 Nov 19.
31 Loss of VHL promotes progerin expression, leading to impaired p14/ARF function and suppression of p53 activity.Cell Cycle. 2013 Jul 15;12(14):2277-90. doi: 10.4161/cc.25371.
32 Smurf2 regulates stability and the autophagic-lysosomal turnover of lamin A and its disease-associated form progerin.Aging Cell. 2018 Apr;17(2):e12732. doi: 10.1111/acel.12732. Epub 2018 Feb 5.
33 Enhanced SRSF5 Protein Expression Reinforces Lamin A mRNA Production in HeLa Cells and Fibroblasts of Progeria Patients.Hum Mutat. 2016 Mar;37(3):280-91. doi: 10.1002/humu.22945. Epub 2016 Jan 12.
34 A conserved splicing mechanism of the LMNA gene controls premature aging.Hum Mol Genet. 2011 Dec 1;20(23):4540-55. doi: 10.1093/hmg/ddr385. Epub 2011 Aug 29.
35 Dysregulated interactions between lamin A and SUN1 induce abnormalities in the nuclear envelope and endoplasmic reticulum in progeric laminopathies.J Cell Sci. 2014 Apr 15;127(Pt 8):1792-804. doi: 10.1242/jcs.139683. Epub 2014 Feb 12.
36 Inhibition of the acetyltransferase NAT10 normalizes progeric and aging cells by rebalancing the Transportin-1 nuclear import pathway.Sci Signal. 2018 Jul 3;11(537):eaar5401. doi: 10.1126/scisignal.aar5401.
37 Computational image analysis of nuclear morphology associated with various nuclear-specific aging disorders.Nucleus. 2011 Nov-Dec;2(6):570-9. doi: 10.4161/nucl.2.6.17798. Epub 2011 Nov 1.
38 Flexible and scalable diagnostic filtering of genomic variants using G2P with Ensembl VEP. Nat Commun. 2019 May 30;10(1):2373. doi: 10.1038/s41467-019-10016-3.
39 Mutations in SPRTN cause early onset hepatocellular carcinoma, genomic instability and progeroid features. Nat Genet. 2014 Nov;46(11):1239-44. doi: 10.1038/ng.3103. Epub 2014 Sep 28.