General Information of Drug Off-Target (DOT) (ID: OT3SG7ZR)

DOT Name Prelamin-A/C (LMNA)
Gene Name LMNA
Related Disease
Congestive heart failure ( )
Dilated cardiomyopathy ( )
Dilated cardiomyopathy 1A ( )
Emery-Dreifuss muscular dystrophy 2, autosomal dominant ( )
Familial partial lipodystrophy, Dunnigan type ( )
Hutchinson-Gilford progeria syndrome ( )
Lung adenocarcinoma ( )
Achalasia ( )
Arrhythmia ( )
Atherosclerosis ( )
Atrioventricular block ( )
Atrioventricular dissociation ( )
Central core myopathy ( )
Charcot-Marie-Tooth disease type 2B1 ( )
Charcot-Marie-Tooth disease type 3 ( )
Congenital fiber-type disproportion myopathy ( )
Congenital muscular dystrophy ( )
Emery-Dreifuss muscular dystrophy 3, autosomal recessive ( )
Heart-hand syndrome, Slovenian type ( )
Hereditary motor and sensory neuropathy ( )
High blood pressure ( )
Hyperinsulinemia ( )
Left ventricular noncompaction ( )
Limb-girdle muscular dystrophy ( )
Mandibuloacral dysplasia with type A lipodystrophy ( )
Muscular dystrophy ( )
Myopathy ( )
Neuromuscular disease ( )
Otitis media ( )
PPARG-related familial partial lipodystrophy ( )
Scleroderma ( )
Ventricular tachycardia ( )
X-linked Emery-Dreifuss muscular dystrophy ( )
Monogenic diabetes ( )
Atypical Werner syndrome ( )
Autosomal dominant Emery-Dreifuss muscular dystrophy ( )
Autosomal semi-dominant severe lipodystrophic laminopathy ( )
Congenital muscular dystrophy due to LMNA mutation ( )
Dilated cardiomyopathy-hypergonadotropic hypogonadism syndrome ( )
LMNA-related cardiocutaneous progeria syndrome ( )
Obsolete autosomal recessive Emery-Dreifuss muscular dystrophy ( )
Obsolete familial isolated dilated cardiomyopathy ( )
Obsolete lethal restrictive dermopathy ( )
Arrhythmogenic right ventricular cardiomyopathy ( )
Arteriosclerosis ( )
Congenital generalized lipodystrophy ( )
Congenital myopathy ( )
Focal segmental glomerulosclerosis ( )
Mandibuloacral dysplasia ( )
Multiminicore myopathy ( )
Nemaline myopathy ( )
Restrictive dermopathy ( )
Restrictive dermopathy 1 ( )
UniProt ID
LMNA_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1IFR; 1IVT; 1X8Y; 2XV5; 2YPT; 3GEF; 3V4Q; 3V4W; 3V5B; 6GHD; 6JLB; 6RPR; 6SNZ; 6YF5; 6YJD; 7CRG; 7D9N; 7WZZ; 7X1B; 7X5D; 7YVD; 7Z21
Pfam ID
PF00038 ; PF00932
Sequence
METPSQRRATRSGAQASSTPLSPTRITRLQEKEDLQELNDRLAVYIDRVRSLETENAGLR
LRITESEEVVSREVSGIKAAYEAELGDARKTLDSVAKERARLQLELSKVREEFKELKARN
TKKEGDLIAAQARLKDLEALLNSKEAALSTALSEKRTLEGELHDLRGQVAKLEAALGEAK
KQLQDEMLRRVDAENRLQTMKEELDFQKNIYSEELRETKRRHETRLVEIDNGKQREFESR
LADALQELRAQHEDQVEQYKKELEKTYSAKLDNARQSAERNSNLVGAAHEELQQSRIRID
SLSAQLSQLQKQLAAKEAKLRDLEDSLARERDTSRRLLAEKEREMAEMRARMQQQLDEYQ
ELLDIKLALDMEIHAYRKLLEGEEERLRLSPSPTSQRSRGRASSHSSQTQGGGSVTKKRK
LESTESRSSFSQHARTSGRVAVEEVDEEGKFVRLRNKSNEDQSMGNWQIKRQNGDDPLLT
YRFPPKFTLKAGQVVTIWAAGAGATHSPPTDLVWKAQNTWGCGNSLRTALINSTGEEVAM
RKLVRSVTVVEDDEDEDGDDLLHHHHGSHCSSSGDPAEYNLRSRTVLCGTCGQPADKASA
SGSGAQVGGPISSGSSASSVTVTRSYRSVGGSGGGSFGDNLVTRSYLLGNSSPRTQSPQN
CSIM
Function
[Lamin-A/C]: Lamins are intermediate filament proteins that assemble into a filamentous meshwork, and which constitute the major components of the nuclear lamina, a fibrous layer on the nucleoplasmic side of the inner nuclear membrane. Lamins provide a framework for the nuclear envelope, bridging the nuclear envelope and chromatin, thereby playing an important role in nuclear assembly, chromatin organization, nuclear membrane and telomere dynamics. Lamin A and C also regulate matrix stiffness by conferring nuclear mechanical properties. The structural integrity of the lamina is strictly controlled by the cell cycle, as seen by the disintegration and formation of the nuclear envelope in prophase and telophase, respectively. Lamin A and C are present in equal amounts in the lamina of mammals. Also invoved in DNA repair: recruited by DNA repair proteins XRCC4 and IFFO1 to the DNA double-strand breaks (DSBs) to prevent chromosome translocation by immobilizing broken DNA ends. Required for normal development of peripheral nervous system and skeletal muscle and for muscle satellite cell proliferation. Required for osteoblastogenesis and bone formation. Also prevents fat infiltration of muscle and bone marrow, helping to maintain the volume and strength of skeletal muscle and bone. Required for cardiac homeostasis ; [Prelamin-A/C]: Prelamin-A/C can accelerate smooth muscle cell senescence. It acts to disrupt mitosis and induce DNA damage in vascular smooth muscle cells (VSMCs), leading to mitotic failure, genomic instability, and premature senescence.
Tissue Specificity
In the arteries, prelamin-A/C accumulation is not observed in young healthy vessels but is prevalent in medial vascular smooth muscle cells (VSMCs) from aged individuals and in atherosclerotic lesions, where it often colocalizes with senescent and degenerate VSMCs. Prelamin-A/C expression increases with age and disease. In normal aging, the accumulation of prelamin-A/C is caused in part by the down-regulation of ZMPSTE24/FACE1 in response to oxidative stress.
KEGG Pathway
Apoptosis (hsa04210 )
Cytoskeleton in muscle cells (hsa04820 )
Hypertrophic cardiomyopathy (hsa05410 )
Arrhythmogenic right ventricular cardiomyopathy (hsa05412 )
Dilated cardiomyopathy (hsa05414 )
Reactome Pathway
(Name not found )
Initiation of Nuclear Envelope (NE) Reformation (R-HSA-2995383 )
XBP1(S) activates chaperone genes (R-HSA-381038 )
Depolymerization of the Nuclear Lamina (R-HSA-4419969 )
Signaling by BRAF and RAF1 fusions (R-HSA-6802952 )
Nuclear Envelope Breakdown (R-HSA-2980766 )

Molecular Interaction Atlas (MIA) of This DOT

53 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Congestive heart failure DIS32MEA Definitive Genetic Variation [1]
Dilated cardiomyopathy DISX608J Definitive Autosomal dominant [2]
Dilated cardiomyopathy 1A DIS0RK9Z Definitive Autosomal dominant [3]
Emery-Dreifuss muscular dystrophy 2, autosomal dominant DIS4FT32 Definitive Autosomal dominant [4]
Familial partial lipodystrophy, Dunnigan type DISD1N0B Definitive Autosomal dominant [5]
Hutchinson-Gilford progeria syndrome DISY55BU Definitive Autosomal dominant [4]
Lung adenocarcinoma DISD51WR Definitive Altered Expression [6]
Achalasia DISK845N Strong Biomarker [7]
Arrhythmia DISFF2NI Strong Genetic Variation [8]
Atherosclerosis DISMN9J3 Strong Genetic Variation [9]
Atrioventricular block DIS8YLE6 Strong Autosomal dominant [10]
Atrioventricular dissociation DIS3N5H4 Strong Biomarker [11]
Central core myopathy DIS18AZZ Strong Genetic Variation [12]
Charcot-Marie-Tooth disease type 2B1 DISRZRGX Strong Autosomal recessive [13]
Charcot-Marie-Tooth disease type 3 DIS6DQK1 Strong Biomarker [13]
Congenital fiber-type disproportion myopathy DISU9T2M Strong Genetic Variation [14]
Congenital muscular dystrophy DISKY7OY Strong Biomarker [15]
Emery-Dreifuss muscular dystrophy 3, autosomal recessive DIST0JEG Strong Autosomal recessive [16]
Heart-hand syndrome, Slovenian type DIS54QNM Strong Autosomal dominant [11]
Hereditary motor and sensory neuropathy DISR0X2K Strong Biomarker [13]
High blood pressure DISY2OHH Strong Altered Expression [17]
Hyperinsulinemia DISIDWT6 Strong Genetic Variation [18]
Left ventricular noncompaction DISJ4QEG Strong Genetic Variation [19]
Limb-girdle muscular dystrophy DISI9Y1Z Strong Biomarker [20]
Mandibuloacral dysplasia with type A lipodystrophy DISZZ6TI Strong Autosomal recessive [21]
Muscular dystrophy DISJD6P7 Strong Genetic Variation [22]
Myopathy DISOWG27 Strong Genetic Variation [23]
Neuromuscular disease DISQTIJZ Strong Genetic Variation [24]
Otitis media DISGZDUO Strong Biomarker [25]
PPARG-related familial partial lipodystrophy DISVYGXS Strong Biomarker [26]
Scleroderma DISVQ342 Strong Genetic Variation [27]
Ventricular tachycardia DISIBXJ3 Strong Genetic Variation [28]
X-linked Emery-Dreifuss muscular dystrophy DISDPMZ3 Strong Biomarker [29]
Monogenic diabetes DISEB8Q0 moderate CausalMutation [30]
Atypical Werner syndrome DIS9SLU2 Supportive Autosomal dominant [31]
Autosomal dominant Emery-Dreifuss muscular dystrophy DISL8GMY Supportive Autosomal dominant [32]
Autosomal semi-dominant severe lipodystrophic laminopathy DIS0BB6S Supportive Semidominant [33]
Congenital muscular dystrophy due to LMNA mutation DISEHF4P Supportive Autosomal dominant [34]
Dilated cardiomyopathy-hypergonadotropic hypogonadism syndrome DISW3YUD Supportive Autosomal recessive [35]
LMNA-related cardiocutaneous progeria syndrome DIST7348 Supportive Autosomal dominant [36]
Obsolete autosomal recessive Emery-Dreifuss muscular dystrophy DISGD4FN Supportive Autosomal recessive [32]
Obsolete familial isolated dilated cardiomyopathy DIS4FXO4 Supportive Autosomal dominant [37]
Obsolete lethal restrictive dermopathy DISI414T Supportive Autosomal dominant [38]
Arrhythmogenic right ventricular cardiomyopathy DIS3V2BE Limited Autosomal dominant [2]
Arteriosclerosis DISK5QGC Limited Genetic Variation [9]
Congenital generalized lipodystrophy DIS4XF8N Limited Genetic Variation [39]
Congenital myopathy DISLSK9G Limited Biomarker [40]
Focal segmental glomerulosclerosis DISJNHH0 Limited Biomarker [41]
Mandibuloacral dysplasia DISMOYL1 Limited Genetic Variation [42]
Multiminicore myopathy DISE6VYN Limited Biomarker [40]
Nemaline myopathy DIS5IYLY Limited Biomarker [40]
Restrictive dermopathy DIS2IBA1 Limited Biomarker [43]
Restrictive dermopathy 1 DISBCVN8 Limited Autosomal dominant [4]
------------------------------------------------------------------------------------
⏷ Show the Full List of 53 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Mitomycin DMH0ZJE Approved Prelamin-A/C (LMNA) affects the response to substance of Mitomycin. [84]
------------------------------------------------------------------------------------
29 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Prelamin-A/C (LMNA). [44]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Prelamin-A/C (LMNA). [45]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Prelamin-A/C (LMNA). [47]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Prelamin-A/C (LMNA). [49]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Prelamin-A/C (LMNA). [51]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Prelamin-A/C (LMNA). [52]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of Prelamin-A/C (LMNA). [53]
Marinol DM70IK5 Approved Marinol decreases the expression of Prelamin-A/C (LMNA). [54]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of Prelamin-A/C (LMNA). [55]
Selenium DM25CGV Approved Selenium increases the expression of Prelamin-A/C (LMNA). [56]
Demecolcine DMCZQGK Approved Demecolcine increases the expression of Prelamin-A/C (LMNA). [58]
Hydroquinone DM6AVR4 Approved Hydroquinone affects the expression of Prelamin-A/C (LMNA). [60]
Rosiglitazone DMILWZR Approved Rosiglitazone affects the expression of Prelamin-A/C (LMNA). [61]
Menthol DMG2KW7 Approved Menthol increases the expression of Prelamin-A/C (LMNA). [62]
Ritonavir DMU764S Approved Ritonavir increases the expression of Prelamin-A/C (LMNA). [63]
Dopamine DMPGUCF Approved Dopamine increases the expression of Prelamin-A/C (LMNA). [64]
Aminoglutethimide DMWFHMZ Approved Aminoglutethimide decreases the expression of Prelamin-A/C (LMNA). [66]
Genistein DM0JETC Phase 2/3 Genistein decreases the expression of Prelamin-A/C (LMNA). [70]
Tocopherol DMBIJZ6 Phase 2 Tocopherol increases the expression of Prelamin-A/C (LMNA). [56]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Prelamin-A/C (LMNA). [72]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 increases the expression of Prelamin-A/C (LMNA). [73]
Tetrandrine DMAOJBX Phase 1 Tetrandrine increases the expression of Prelamin-A/C (LMNA). [75]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Prelamin-A/C (LMNA). [76]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Prelamin-A/C (LMNA). [79]
Trichostatin A DM9C8NX Investigative Trichostatin A affects the expression of Prelamin-A/C (LMNA). [80]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Prelamin-A/C (LMNA). [58]
[3H]methyltrienolone DMTSGOW Investigative [3H]methyltrienolone decreases the expression of Prelamin-A/C (LMNA). [81]
Butanoic acid DMTAJP7 Investigative Butanoic acid decreases the expression of Prelamin-A/C (LMNA). [82]
DMQNVR8 increases the expression of Prelamin-A/C (LMNA). [63]
------------------------------------------------------------------------------------
⏷ Show the Full List of 29 Drug(s)
8 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
Doxorubicin DMVP5YE Approved Doxorubicin increases the cleavage of Prelamin-A/C (LMNA). [46]
Fluorouracil DMUM7HZ Approved Fluorouracil increases the cleavage of Prelamin-A/C (LMNA). [57]
Bortezomib DMNO38U Approved Bortezomib increases the cleavage of Prelamin-A/C (LMNA). [59]
Deoxycholic acid DM3GYAL Approved Deoxycholic acid increases the cleavage of Prelamin-A/C (LMNA). [65]
Resveratrol DM3RWXL Phase 3 Resveratrol increases the cleavage of Prelamin-A/C (LMNA). [69]
PMID25656651-Compound-5 DMAI95U Patented PMID25656651-Compound-5 increases the cleavage of Prelamin-A/C (LMNA). [78]
Staurosporine DM0E9BR Investigative Staurosporine increases the cleavage of Prelamin-A/C (LMNA). [83]
Chelerythrine DMCP1G9 Investigative Chelerythrine increases the cleavage of Prelamin-A/C (LMNA). [83]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Drug(s)
8 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Estradiol DMUNTE3 Approved Estradiol increases the phosphorylation of Prelamin-A/C (LMNA). [48]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Prelamin-A/C (LMNA). [50]
Lopinavir DMITQS0 Approved Lopinavir increases the farnesylation of Prelamin-A/C (LMNA). [67]
Lonafarnib DMGM2Z6 Approved Lonafarnib decreases the farnesylation of Prelamin-A/C (LMNA). [68]
G1 DMTV42K Phase 1/2 G1 increases the phosphorylation of Prelamin-A/C (LMNA). [48]
TAK-243 DM4GKV2 Phase 1 TAK-243 decreases the sumoylation of Prelamin-A/C (LMNA). [74]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Prelamin-A/C (LMNA). [77]
Coumarin DM0N8ZM Investigative Coumarin affects the phosphorylation of Prelamin-A/C (LMNA). [77]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Drug(s)
2 Drug(s) Affected the Biochemical Pathways of This DOT
Drug Name Drug ID Highest Status Interaction REF
DNCB DMDTVYC Phase 2 DNCB increases the metabolism of Prelamin-A/C (LMNA). [71]
cinnamaldehyde DMZDUXG Investigative cinnamaldehyde increases the metabolism of Prelamin-A/C (LMNA). [71]
------------------------------------------------------------------------------------

References

1 Cardiac Involvement in Emery-Dreifuss Muscular Dystrophy and Related Management Strategies.Int Heart J. 2019 Jan 25;60(1):12-18. doi: 10.1536/ihj.17-604. Epub 2018 Dec 5.
2 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
3 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
4 Flexible and scalable diagnostic filtering of genomic variants using G2P with Ensembl VEP. Nat Commun. 2019 May 30;10(1):2373. doi: 10.1038/s41467-019-10016-3.
5 Nuclear lamin A/C R482Q mutation in canadian kindreds with Dunnigan-type familial partial lipodystrophy. Hum Mol Genet. 2000 Jan 1;9(1):109-12. doi: 10.1093/hmg/9.1.109.
6 Low lamin A expression in lung adenocarcinoma cells from pleural effusions is a pejorative factor associated with high number of metastatic sites and poor Performance status.PLoS One. 2017 Aug 14;12(8):e0183136. doi: 10.1371/journal.pone.0183136. eCollection 2017.
7 Mice that express farnesylated versions of prelamin A in neurons develop achalasia.Hum Mol Genet. 2015 May 15;24(10):2826-40. doi: 10.1093/hmg/ddv043. Epub 2015 Feb 4.
8 Activation of PDGF pathway links LMNA mutation to dilated cardiomyopathy.Nature. 2019 Aug;572(7769):335-340. doi: 10.1038/s41586-019-1406-x. Epub 2019 Jul 17.
9 The lipodystrophic hotspot lamin A p.R482W mutation deregulates the mesodermal inducer T/Brachyury and early vascular differentiation gene networks.Hum Mol Genet. 2018 Apr 15;27(8):1447-1459. doi: 10.1093/hmg/ddy055.
10 The Gene Curation Coalition: A global effort to harmonize gene-disease evidence resources. Genet Med. 2022 Aug;24(8):1732-1742. doi: 10.1016/j.gim.2022.04.017. Epub 2022 May 4.
11 Familial progressive sinoatrial and atrioventricular conduction disease of adult onset with sudden death, dilated cardiomyopathy, and brachydactyly. A new type of heart-hand syndrome?. Clin Genet. 2005 Aug;68(2):155-60. doi: 10.1111/j.1399-0004.2005.00476.x.
12 A Novel Truncating LMNA Mutation in Patients with Cardiac Conduction Disorders and Dilated Cardiomyopathy.Int Heart J. 2018 May 30;59(3):531-541. doi: 10.1536/ihj.17-377. Epub 2018 May 6.
13 Homozygous defects in LMNA, encoding lamin A/C nuclear-envelope proteins, cause autosomal recessive axonal neuropathy in human (Charcot-Marie-Tooth disorder type 2) and mouse. Am J Hum Genet. 2002 Mar;70(3):726-36. doi: 10.1086/339274. Epub 2002 Jan 17.
14 Muscle fiber type disproportion (FTD) in a family with mutations in the LMNA gene.Muscle Nerve. 2015 Apr;51(4):604-8. doi: 10.1002/mus.24467. Epub 2015 Feb 24.
15 Lamins and bone disorders: current understanding and perspectives.Oncotarget. 2018 Apr 27;9(32):22817-22831. doi: 10.18632/oncotarget.25071. eCollection 2018 Apr 27.
16 Different mutations in the LMNA gene cause autosomal dominant and autosomal recessive Emery-Dreifuss muscular dystrophy. Am J Hum Genet. 2000 Apr;66(4):1407-12. doi: 10.1086/302869. Epub 2000 Mar 16.
17 Lamin A/C negatively regulated by miR-124-3p modulates apoptosis of vascular smooth muscle cells during cyclic stretch application in rats.Acta Physiol (Oxf). 2020 Mar;228(3):e13374. doi: 10.1111/apha.13374. Epub 2019 Sep 27.
18 The Val81 missense mutation of the melanocortin 3 receptor gene, but not the 1908c/T nucleotide polymorphism in lamin A/C gene, is associated with hyperleptinemia and hyperinsulinemia in obese Greek caucasians.J Endocrinol Invest. 2004 Sep;27(8):714-20. doi: 10.1007/BF03347511.
19 Familial dilated cardiomyopathy and isolated left ventricular noncompaction associated with lamin A/C gene mutations.Am J Cardiol. 2004 Jul 1;94(1):50-4. doi: 10.1016/j.amjcard.2004.03.029.
20 Deficiency of emerin contributes differently to the pathogenesis of skeletal and cardiac muscles in LmnaH222P/H222P mutant mice.PLoS One. 2019 Aug 20;14(8):e0221512. doi: 10.1371/journal.pone.0221512. eCollection 2019.
21 Homozygous missense mutation in the lamin A/C gene causes autosomal recessive Hutchinson-Gilford progeria syndrome. J Med Genet. 2004 Aug;41(8):609-14. doi: 10.1136/jmg.2004.019661.
22 Recurrent Femoral Fractures in a Boy with an Atypical Progeroid Syndrome: A Case Report.Calcif Tissue Int. 2020 Mar;106(3):325-330. doi: 10.1007/s00223-019-00639-5. Epub 2019 Dec 5.
23 Cardiometabolic assessment of lamin A/C gene mutation carriers: a phenotype-genotype correlation.Diabetes Metab. 2019 Sep;45(4):382-389. doi: 10.1016/j.diabet.2018.09.006. Epub 2018 Oct 1.
24 Novel Genetic Triggers and Genotype-Phenotype Correlations in Patients With Left Ventricular Noncompaction.Circ Cardiovasc Genet. 2017 Aug;10(4):e001763. doi: 10.1161/CIRCGENETICS.117.001763.
25 Pathological features in the LmnaDhe/+ mutant mouse provide a novel model of human otitis media and laminopathies.Am J Pathol. 2012 Sep;181(3):761-74. doi: 10.1016/j.ajpath.2012.05.031. Epub 2012 Jul 20.
26 Clinical characteristics and efficacy of pioglitazone in a Japanese diabetic patient with an unusual type of familial partial lipodystrophy.Metabolism. 2009 Dec;58(12):1681-7. doi: 10.1016/j.metabol.2009.04.043. Epub 2009 Sep 29.
27 Progeroid syndrome with scleroderma-like skin changes associated with homozygous R435C LMNA mutation.Am J Med Genet A. 2009 Nov;149A(11):2387-92. doi: 10.1002/ajmg.a.33018.
28 Development and Validation of a New Risk Prediction Score for Life-Threatening Ventricular Tachyarrhythmias in Laminopathies.Circulation. 2019 Jul 23;140(4):293-302. doi: 10.1161/CIRCULATIONAHA.118.039410. Epub 2019 Jun 3.
29 229th ENMC international workshop: Limb girdle muscular dystrophies - Nomenclature and reformed classification Naarden, the Netherlands, 17-19 March 2017.Neuromuscul Disord. 2018 Aug;28(8):702-710. doi: 10.1016/j.nmd.2018.05.007. Epub 2018 May 24.
30 Homozygous lamin A/C familial lipodystrophy R482Q mutation in autosomal recessive Emery Dreifuss muscular dystrophy.Neuromuscul Disord. 2013 Mar;23(3):265-8. doi: 10.1016/j.nmd.2012.11.011. Epub 2013 Jan 11.
31 LMNA mutations in atypical Werner's syndrome. Lancet. 2003 Aug 9;362(9382):440-5. doi: 10.1016/S0140-6736(03)14069-X.
32 Clinical Practice Guidelines for Rare Diseases: The Orphanet Database. PLoS One. 2017 Jan 18;12(1):e0170365. doi: 10.1371/journal.pone.0170365. eCollection 2017.
33 A homozygous mutation of prelamin-A preventing its farnesylation and maturation leads to a severe lipodystrophic phenotype: new insights into the pathogenicity of nonfarnesylated prelamin-A. J Clin Endocrinol Metab. 2011 May;96(5):E856-62. doi: 10.1210/jc.2010-2234. Epub 2011 Feb 23.
34 De novo LMNA mutations cause a new form of congenital muscular dystrophy. Ann Neurol. 2008 Aug;64(2):177-86. doi: 10.1002/ana.21417.
35 Ovarian failure and dilated cardiomyopathy due to a novel lamin mutation. Am J Med Genet A. 2009 Feb 15;149A(4):567-72. doi: 10.1002/ajmg.a.32627.
36 LMNA-associated cardiocutaneous progeria: an inherited autosomal dominant premature aging syndrome with late onset. Am J Med Genet A. 2013 Jul;161A(7):1599-611. doi: 10.1002/ajmg.a.35971. Epub 2013 May 10.
37 Lamin A/C mutations in dilated cardiomyopathy. Cardiol J. 2014;21(4):331-42. doi: 10.5603/CJ.a2014.0037. Epub 2014 May 20.
38 Restrictive dermopathy: a rare laminopathy. Arch Gynecol Obstet. 2008 Sep;278(3):201-8. doi: 10.1007/s00404-008-0676-6. Epub 2008 May 10.
39 A case of generalized lipodystrophy-associated progeroid syndrome treated by leptin replacement with short and long-term monitoring of the metabolic and endocrine profiles.Endocr J. 2020 Feb 28;67(2):211-218. doi: 10.1507/endocrj.EJ19-0226. Epub 2019 Nov 8.
40 DelK32-lamin A/C has abnormal location and induces incomplete tissue maturation and severe metabolic defects leading to premature death.Hum Mol Genet. 2012 Mar 1;21(5):1037-48. doi: 10.1093/hmg/ddr534. Epub 2011 Nov 16.
41 Cosegregation of focal segmental glomerulosclerosis in a family with familial partial lipodystrophy due to a mutation in LMNA.Nephron Clin Pract. 2013;124(1-2):31-7. doi: 10.1159/000354716. Epub 2013 Sep 26.
42 Mandibuloacral dysplasia: A premature ageing disease with aspects of physiological ageing.Ageing Res Rev. 2018 Mar;42:1-13. doi: 10.1016/j.arr.2017.12.001. Epub 2017 Dec 5.
43 Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples.Genet Med. 2017 Feb;19(2):192-203. doi: 10.1038/gim.2016.90. Epub 2016 Aug 17.
44 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
45 Proteomics investigations of drug-induced hepatotoxicity in HepG2 cells. Toxicol Sci. 2011 Mar;120(1):109-22.
46 B cell translocation gene 2 enhances susceptibility of HeLa cells to doxorubicin-induced oxidative damage. J Biol Chem. 2008 Nov 28;283(48):33110-8. doi: 10.1074/jbc.M804255200. Epub 2008 Oct 7.
47 Nuclear proteome analysis of cisplatin-treated HeLa cells. Mutat Res. 2010 Sep 10;691(1-2):1-8. doi: 10.1016/j.mrfmmm.2010.06.002. Epub 2010 Jun 9.
48 The G Protein-Coupled Estrogen Receptor Agonist G-1 Inhibits Nuclear Estrogen Receptor Activity and Stimulates Novel Phosphoproteomic Signatures. Toxicol Sci. 2016 Jun;151(2):434-46. doi: 10.1093/toxsci/kfw057. Epub 2016 Mar 29.
49 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
50 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
51 Identification of biomarkers for the initiation of apoptosis in human preneoplastic colonocytes by proteome analysis. Int J Cancer. 2004 Mar 20;109(2):220-9. doi: 10.1002/ijc.11692.
52 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
53 Functional gene expression profile underlying methotrexate-induced senescence in human colon cancer cells. Tumour Biol. 2011 Oct;32(5):965-76.
54 THC exposure of human iPSC neurons impacts genes associated with neuropsychiatric disorders. Transl Psychiatry. 2018 Apr 25;8(1):89. doi: 10.1038/s41398-018-0137-3.
55 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
56 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
57 Resveratrol displays converse dose-related effects on 5-fluorouracil-evoked colon cancer cell apoptosis: the roles of caspase-6 and p53. Cancer Biol Ther. 2008 Aug;7(8):1305-12. doi: 10.4161/cbt.7.8.6302. Epub 2008 Aug 16.
58 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
59 Bortezomib blocks the catabolic process of autophagy via a cathepsin-dependent mechanism, affects endoplasmic reticulum stress and induces caspase-dependent cell death in antiestrogen-sensitive and resistant ER+ breast cancer cells. Autophagy. 2010 Jan;6(1):19-35. doi: 10.4161/auto.6.1.10323.
60 [Differential proteomic expression in human liver cells stimulated by hydroquinone]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2006 Nov;24(11):658-61.
61 Proteomic analysis of human adipose tissue after rosiglitazone treatment shows coordinated changes to promote glucose uptake. Obesity (Silver Spring). 2010 Jan;18(1):27-34. doi: 10.1038/oby.2009.208. Epub 2009 Jun 25.
62 Repurposing L-menthol for systems medicine and cancer therapeutics? L-menthol induces apoptosis through caspase 10 and by suppressing HSP90. OMICS. 2016 Jan;20(1):53-64.
63 Premature senescence of vascular cells is induced by HIV protease inhibitors: implication of prelamin A and reversion by statin. Arterioscler Thromb Vasc Biol. 2010 Dec;30(12):2611-20. doi: 10.1161/ATVBAHA.110.213603. Epub 2010 Sep 30.
64 Mitochondrial proteomics investigation of a cellular model of impaired dopamine homeostasis, an early step in Parkinson's disease pathogenesis. Mol Biosyst. 2014 Jun;10(6):1332-44.
65 Prevention of deoxycholate-induced gastric apoptosis by aspirin: roles of NF-kappaB and PKC signaling. J Surg Res. 2008 Mar;145(1):66-73. doi: 10.1016/j.jss.2007.04.039. Epub 2007 Jul 20.
66 Proteomic profile of aminoglutethimide-induced apoptosis in HL-60 cells: role of myeloperoxidase and arylamine free radicals. Chem Biol Interact. 2015 Sep 5;239:129-38.
67 A potent HIV protease inhibitor, darunavir, does not inhibit ZMPSTE24 or lead to an accumulation of farnesyl-prelamin A in cells. J Biol Chem. 2008 Apr 11;283(15):9797-804. doi: 10.1074/jbc.M709629200. Epub 2008 Jan 28.
68 Inhibitors of the mevalonate pathway as potential therapeutic agents in multiple myeloma. Leuk Res. 2007 Mar;31(3):341-52. doi: 10.1016/j.leukres.2006.07.018. Epub 2006 Sep 22.
69 Functional proteomics of resveratrol-induced colon cancer cell apoptosis: caspase-6-mediated cleavage of lamin A is a major signaling loop. Proteomics. 2006 Apr;6(8):2386-94. doi: 10.1002/pmic.200500366.
70 Quantitative proteomics and transcriptomics addressing the estrogen receptor subtype-mediated effects in T47D breast cancer cells exposed to the phytoestrogen genistein. Mol Cell Proteomics. 2011 Jan;10(1):M110.002170.
71 Determination of Protein Haptenation by Chemical Sensitizers Within the Complexity of the Human Skin Proteome. Toxicol Sci. 2018 Apr 1;162(2):429-438. doi: 10.1093/toxsci/kfx265.
72 Genome-wide transcriptional and functional analysis of human T lymphocytes treated with benzo[alpha]pyrene. Int J Mol Sci. 2018 Nov 17;19(11).
73 BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell. 2011 Sep 16;146(6):904-17.
74 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
75 Tetrandrine and cepharanthine induce apoptosis through caspase cascade regulation, cell cycle arrest, MAPK activation and PI3K/Akt/mTOR signal modification in glucocorticoid resistant human leukemia Jurkat T cells. Chem Biol Interact. 2019 Sep 1;310:108726. doi: 10.1016/j.cbi.2019.108726. Epub 2019 Jun 28.
76 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
77 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
78 Ponatinib as targeted therapy for FGFR1 fusions associated with the 8p11 myeloproliferative syndrome. Haematologica. 2013 Jan;98(1):103-6. doi: 10.3324/haematol.2012.066407. Epub 2012 Aug 8.
79 Low-dose Bisphenol A exposure alters the functionality and cellular environment in a human cardiomyocyte model. Environ Pollut. 2023 Oct 15;335:122359. doi: 10.1016/j.envpol.2023.122359. Epub 2023 Aug 9.
80 A trichostatin A expression signature identified by TempO-Seq targeted whole transcriptome profiling. PLoS One. 2017 May 25;12(5):e0178302. doi: 10.1371/journal.pone.0178302. eCollection 2017.
81 Evaluation of an in vitro model of androgen ablation and identification of the androgen responsive proteome in LNCaP cells. Proteomics. 2007 Jan;7(1):47-63.
82 MS4A3-HSP27 target pathway reveals potential for haematopoietic disorder treatment in alimentary toxic aleukia. Cell Biol Toxicol. 2023 Feb;39(1):201-216. doi: 10.1007/s10565-021-09639-4. Epub 2021 Sep 28.
83 An Early and Robust Activation of Caspases Heads Cells for a Regulated Form of Necrotic-like Cell Death. J Biol Chem. 2015 Aug 21;290(34):20841-20855. doi: 10.1074/jbc.M115.644179. Epub 2015 Jun 29.
84 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.