General Information of Disease (ID: DISYF1GO)

Disease Name G6PD deficiency
Synonyms
glucose-6-phosphate dehydrogenase deficiency; inborn error of glucose-6-phosphate dehydrogenase activity; deficiency of G-6PD; rare inborn error of glucose-6-phosphate dehydrogenase activity; glucosephosphate dehydrogenase deficiency; inborn glucose-6-phosphate dehydrogenase activity disorder; G-6-PD variant enzyme deficiency Anaemia; G6PD; G6PD deficiency; G-6-PD variant enzyme deficiency Anemia
Definition
An X-linked genetic condition caused by alterations in the gene G6PD that result in moderately to severely decreased activity levels of the enzyme glucose-6-phosphate dehydrogenase. Most individuals with G6PD deficiency are asymptomatic. Individuals with G6PD variants that cause G6PD deficiency are at risk for neonatal jaundice. These individuals are also at risk for acute hemolytic anemia in response to certain medication exposures, chemical exposures, infections, or consumption of fava beans.
Disease Hierarchy
DISO5FAY: Inborn error of metabolism
DISV24X3: Carbohydrate metabolism disorder
DISYF1GO: G6PD deficiency
Disease Identifiers
MONDO ID
MONDO_0005775
MESH ID
D005955
UMLS CUI
C2939465
MedGen ID
473706
SNOMED CT ID
124134002

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 6 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
HBA2 TTQO71U Strong Genetic Variation [1]
MTM1 TTY2TCU Strong Biomarker [2]
SLCO1B1 TTFGXEB Strong Genetic Variation [3]
TKT TT04R7I Strong Biomarker [4]
UGT1A1 TT34ZAF Strong Genetic Variation [5]
G6PD TTKN8W0 Definitive X-linked [6]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 DTT(s)
This Disease Is Related to 6 DME Molecule(s)
Gene Name DME ID Evidence Level Mode of Inheritance REF
ABO DESIA7R Strong Genetic Variation [7]
UGT1A10 DEL5N6Y Strong Genetic Variation [3]
UGT1A4 DELOY3P Strong Genetic Variation [3]
UGT1A6 DESD26P Strong Genetic Variation [3]
UGT1A7 DEZO4N3 Strong Genetic Variation [3]
UGT1A8 DE2GB8N Strong Genetic Variation [3]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 DME(s)
This Disease Is Related to 10 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
RABEP2 OTO61X27 Limited Biomarker [8]
DECR1 OTCDIR6X moderate Biomarker [9]
C5AR2 OTP1Q82J Strong Genetic Variation [10]
CA10 OTC3N1F6 Strong Genetic Variation [11]
GYPB OTESHUIX Strong Biomarker [12]
GYPE OTBHAG6A Strong Biomarker [12]
HBG2 OT4J48JJ Strong Biomarker [13]
NDUFAB1 OTF906UR Strong Genetic Variation [14]
PRB1 OTV0SYMD Strong Biomarker [15]
G6PD OT300SMK Definitive X-linked [6]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 DOT(s)

References

1 Realizing effectiveness across continents with hydroxyurea: Enrollment and baseline characteristics of the multicenter REACH study in Sub-Saharan Africa.Am J Hematol. 2018 Aug;93(4):537-545. doi: 10.1002/ajh.25034. Epub 2018 Jan 27.
2 X-linked centronuclear myopathy: mapping the gene to Xq28.Neuromuscul Disord. 1991;1(4):239-45. doi: 10.1016/0960-8966(91)90096-b.
3 Risk assessment of gene variants for neonatal hyperbilirubinemia in Taiwan.BMC Pediatr. 2016 Aug 24;16(1):144. doi: 10.1186/s12887-016-0685-8.
4 Metabolic reprogramming and redox adaptation in sorafenib-resistant leukemia cells: detected by untargeted metabolomics and stable isotope tracing analysis.Cancer Commun (Lond). 2019 Apr 4;39(1):17. doi: 10.1186/s40880-019-0362-z.
5 Clinical Significance of UGT1A1 Genetic Analysis in Chinese Neonates with Severe Hyperbilirubinemia.Pediatr Neonatol. 2016 Aug;57(4):310-7. doi: 10.1016/j.pedneo.2015.08.008. Epub 2015 Dec 2.
6 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
7 USP38, FREM3, SDC1, DDC, and LOC727982 Gene Polymorphisms and Differential Susceptibility to Severe Malaria in Tanzania.J Infect Dis. 2015 Oct 1;212(7):1129-39. doi: 10.1093/infdis/jiv192. Epub 2015 Mar 24.
8 Mental retardation in heterozygotes for the fragile-X mutation: evidence in favor of an X inactivation-dependent effect.Am J Hum Genet. 1990 Apr;46(4):738-43.
9 Frequency of glucose-6-phosphate dehydrogenase deficiency in malaria patients from six African countries enrolled in two randomized anti-malarial clinical trials.Malar J. 2011 Aug 17;10:241. doi: 10.1186/1475-2875-10-241.
10 Genetic polymorphisms in paraoxonase 1 and G protein-coupled receptor 77, and the risk of glucose-6-phosphate dehydrogenase deficiency in a Saudi population.Saudi Med J. 2015 May;36(5):544-8. doi: 10.15537/smj.2015.5.11860.
11 G6PD (AC)n and (CTT)n microsatellites in Mexican Mestizos with common G6PD African variants.Blood Cells Mol Dis. 2007 May-Jun;38(3):238-41. doi: 10.1016/j.bcmd.2006.11.005. Epub 2007 Jan 12.
12 Blood groups and types, hemoglobin variants, and G-6-PD deficiency among Abu Dhabians in the United Arab Emirates.Am J Phys Anthropol. 1980 May;52(4):481-4. doi: 10.1002/ajpa.1330520404.
13 Glucose-6-phosphate dehydrogenase red blood cell phenotype in GdMediterranean heterozygous females and hemizygous males at birth.Pediatr Res. 1981 Nov;15(11):1443-6. doi: 10.1203/00006450-198111000-00012.
14 Association between ACP(1) genetic polymorphism and favism.Genet Mol Res. 2011 May 17;10(2):878-84. doi: 10.4238/vol10-2gmr1062.
15 Prevalence of G6PD deficiency in selected populations from two previously high malaria endemic areas of Sri Lanka.PLoS One. 2017 Feb 2;12(2):e0171208. doi: 10.1371/journal.pone.0171208. eCollection 2017.