General Information of Drug Off-Target (DOT) (ID: OT174UPV)

DOT Name Inward rectifier potassium channel 16 (KCNJ16)
Synonyms Inward rectifier K(+) channel Kir5.1; Potassium channel, inwardly rectifying subfamily J member 16
Gene Name KCNJ16
Related Disease
EAST syndrome ( )
Hypokalemic alkalosis, familial, with specific renal tubulopathy ( )
Hypokalemic tubulopathy and deafness ( )
Intellectual disability ( )
Matthew-Wood syndrome ( )
UniProt ID
KCJ16_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF01007 ; PF17655
Sequence
MSYYGSSYHIINADAKYPGYPPEHIIAEKRRARRRLLHKDGSCNVYFKHIFGEWGSYVVD
IFTTLVDTKWRHMFVIFSLSYILSWLIFGSVFWLIAFHHGDLLNDPDITPCVDNVHSFTG
AFLFSLETQTTIGYGYRCVTEECSVAVLMVILQSILSCIINTFIIGAALAKMATARKRAQ
TIRFSYFALIGMRDGKLCLMWRIGDFRPNHVVEGTVRAQLLRYTEDSEGRMTMAFKDLKL
VNDQIILVTPVTIVHEIDHESPLYALDRKAVAKDNFEILVTFIYTGDSTGTSHQSRSSYV
PREILWGHRFNDVLEVKRKYYKVNCLQFEGSVEVYAPFCSAKQLDWKDQQLHIEKAPPVR
ESCTSDTKARRRSFSAVAIVSSCENPEETTTSATHEYRETPYQKALLTLNRISVESQM
Function
Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. KCNJ16 may be involved in the regulation of fluid and pH balance. In the kidney, together with KCNJ10, mediates basolateral K(+) recycling in distal tubules; this process is critical for Na(+) reabsorption at the tubules.
Tissue Specificity Widely expressed, with highest levels in adult and fetal kidney (at protein level). In the kidney, expressed in the proximal and distal convoluted tubules, but not in glomeruli nor collecting ducts.
KEGG Pathway
Gastric acid secretion (hsa04971 )
Reactome Pathway
Potassium transport channels (R-HSA-1296067 )
Inhibition of voltage gated Ca2+ channels via Gbeta/gamma subunits (R-HSA-997272 )
Activation of G protein gated Potassium channels (R-HSA-1296041 )

Molecular Interaction Atlas (MIA) of This DOT

5 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
EAST syndrome DISSXDQ8 Strong Biomarker [1]
Hypokalemic alkalosis, familial, with specific renal tubulopathy DISL94EJ Strong Autosomal recessive [2]
Hypokalemic tubulopathy and deafness DISTTMHD Strong Autosomal recessive [3]
Intellectual disability DISMBNXP Strong Genetic Variation [3]
Matthew-Wood syndrome DISA7HR7 Strong Altered Expression [4]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Inward rectifier potassium channel 16 (KCNJ16). [5]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Inward rectifier potassium channel 16 (KCNJ16). [15]
------------------------------------------------------------------------------------
12 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Inward rectifier potassium channel 16 (KCNJ16). [6]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Inward rectifier potassium channel 16 (KCNJ16). [7]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Inward rectifier potassium channel 16 (KCNJ16). [8]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Inward rectifier potassium channel 16 (KCNJ16). [9]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Inward rectifier potassium channel 16 (KCNJ16). [6]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Inward rectifier potassium channel 16 (KCNJ16). [10]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of Inward rectifier potassium channel 16 (KCNJ16). [11]
Progesterone DMUY35B Approved Progesterone increases the expression of Inward rectifier potassium channel 16 (KCNJ16). [12]
Menadione DMSJDTY Approved Menadione affects the expression of Inward rectifier potassium channel 16 (KCNJ16). [10]
Ethanol DMDRQZU Approved Ethanol decreases the expression of Inward rectifier potassium channel 16 (KCNJ16). [13]
Genistein DM0JETC Phase 2/3 Genistein decreases the expression of Inward rectifier potassium channel 16 (KCNJ16). [14]
Bisphenol A DM2ZLD7 Investigative Bisphenol A affects the expression of Inward rectifier potassium channel 16 (KCNJ16). [16]
------------------------------------------------------------------------------------
⏷ Show the Full List of 12 Drug(s)

References

1 Renal phenotype in mice lacking the Kir5.1 (Kcnj16) K+ channel subunit contrasts with that observed in SeSAME/EAST syndrome.Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10361-6. doi: 10.1073/pnas.1101400108. Epub 2011 Jun 1.
2 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
3 Variability in a three-generation family with Pierre Robin sequence, acampomelic campomelic dysplasia, and intellectual disability due to a novel ?1 Mb deletion upstream of SOX9, and including KCNJ2 and KCNJ16. Birth Defects Res A Clin Mol Teratol. 2016 Jan;106(1):61-8. doi: 10.1002/bdra.23463. Epub 2015 Dec 11.
4 Integrated expression profiling of potassium channels identifys KCNN4 as a prognostic biomarker of pancreatic cancer.Biochem Biophys Res Commun. 2017 Dec 9;494(1-2):113-119. doi: 10.1016/j.bbrc.2017.10.072. Epub 2017 Oct 16.
5 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
6 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
7 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
8 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
9 Gamma-irradiation and doxorubicin treatment of normal human cells cause cell cycle arrest via different pathways. Mol Cells. 2005 Dec 31;20(3):331-8.
10 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
11 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
12 Coordinate up-regulation of TMEM97 and cholesterol biosynthesis genes in normal ovarian surface epithelial cells treated with progesterone: implications for pathogenesis of ovarian cancer. BMC Cancer. 2007 Dec 11;7:223.
13 Cardiac toxicity from ethanol exposure in human-induced pluripotent stem cell-derived cardiomyocytes. Toxicol Sci. 2019 May 1;169(1):280-292.
14 Dose- and time-dependent transcriptional response of Ishikawa cells exposed to genistein. Toxicol Sci. 2016 May;151(1):71-87.
15 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
16 The genomic response of Ishikawa cells to bisphenol A exposure is dose- and time-dependent. Toxicology. 2010 Apr 11;270(2-3):137-49. doi: 10.1016/j.tox.2010.02.008. Epub 2010 Feb 17.