General Information of Drug Off-Target (DOT) (ID: OT2C6TH2)

DOT Name Transcription factor IIIB 50 kDa subunit (BRF2)
Synonyms TFIIIB50; hTFIIIB50; B-related factor 2; BRF-2; hBRFU
Gene Name BRF2
Related Disease
Breast cancer ( )
Esophageal squamous cell carcinoma ( )
Lung cancer ( )
Lung carcinoma ( )
Lung squamous cell carcinoma ( )
Squamous cell carcinoma ( )
Advanced cancer ( )
Breast carcinoma ( )
Non-small-cell lung cancer ( )
Neoplasm ( )
UniProt ID
BRF2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
4ROC; 4ROD; 4ROE; 5N9G; 8ITY; 8IUE; 8IUH
Pfam ID
PF08271
Sequence
MPGRGRCPDCGSTELVEDSHYSQSQLVCSDCGCVVTEGVLTTTFSDEGNLREVTYSRSTG
ENEQVSRSQQRGLRRVRDLCRVLQLPPTFEDTAVAYYQQAYRHSGIRAARLQKKEVLVGC
CVLITCRQHNWPLTMGAICTLLYADLDVFSSTYMQIVKLLGLDVPSLCLAELVKTYCSSF
KLFQASPSVPAKYVEDKEKMLSRTMQLVELANETWLVTGRHPLPVITAATFLAWQSLQPA
DRLSCSLARFCKLANVDLPYPASSRLQELLAVLLRMAEQLAWLRVLRLDKRSVVKHIGDL
LQHRQSLVRSAFRDGTAEVETREKEPPGWGQGQGEGEVGNNSLGLPQGKRPASPALLLPP
CMLKSPKRICPVPPVSTVTGDENISDSEIEQYLRTPQEVRDFQRAQAARQAATSVPNPP
Function
General activator of RNA polymerase III transcription. Factor exclusively required for RNA polymerase III transcription of genes with promoter elements upstream of the initiation sites. Contributes to the regulation of gene expression; functions as activator in the absence of oxidative stress. Down-regulates expression of target genes in response to oxidative stress. Overexpression protects cells against apoptosis in response to oxidative stress.
Reactome Pathway
RNA Polymerase III Transcription Initiation From Type 3 Promoter (R-HSA-76071 )
RNA Polymerase III Abortive And Retractive Initiation (R-HSA-749476 )

Molecular Interaction Atlas (MIA) of This DOT

10 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Breast cancer DIS7DPX1 Strong Biomarker [1]
Esophageal squamous cell carcinoma DIS5N2GV Strong Biomarker [2]
Lung cancer DISCM4YA Strong Biomarker [3]
Lung carcinoma DISTR26C Strong Biomarker [3]
Lung squamous cell carcinoma DISXPIBD Strong Biomarker [4]
Squamous cell carcinoma DISQVIFL Strong Biomarker [2]
Advanced cancer DISAT1Z9 moderate Biomarker [5]
Breast carcinoma DIS2UE88 moderate Biomarker [1]
Non-small-cell lung cancer DIS5Y6R9 moderate Altered Expression [6]
Neoplasm DISZKGEW Limited Altered Expression [7]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
13 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate affects the expression of Transcription factor IIIB 50 kDa subunit (BRF2). [8]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Transcription factor IIIB 50 kDa subunit (BRF2). [9]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Transcription factor IIIB 50 kDa subunit (BRF2). [10]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Transcription factor IIIB 50 kDa subunit (BRF2). [9]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Transcription factor IIIB 50 kDa subunit (BRF2). [12]
Decitabine DMQL8XJ Approved Decitabine increases the expression of Transcription factor IIIB 50 kDa subunit (BRF2). [13]
Marinol DM70IK5 Approved Marinol decreases the expression of Transcription factor IIIB 50 kDa subunit (BRF2). [14]
Selenium DM25CGV Approved Selenium increases the expression of Transcription factor IIIB 50 kDa subunit (BRF2). [15]
Bortezomib DMNO38U Approved Bortezomib increases the expression of Transcription factor IIIB 50 kDa subunit (BRF2). [16]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Transcription factor IIIB 50 kDa subunit (BRF2). [17]
Tocopherol DMBIJZ6 Phase 2 Tocopherol increases the expression of Transcription factor IIIB 50 kDa subunit (BRF2). [15]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Transcription factor IIIB 50 kDa subunit (BRF2). [9]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Transcription factor IIIB 50 kDa subunit (BRF2). [18]
------------------------------------------------------------------------------------
⏷ Show the Full List of 13 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic increases the methylation of Transcription factor IIIB 50 kDa subunit (BRF2). [11]
------------------------------------------------------------------------------------

References

1 Understanding the functional impact of copy number alterations in breast cancer using a network modeling approach.Mol Biosyst. 2016 Mar;12(3):963-72. doi: 10.1039/c5mb00655d.
2 BRF2 as a promising indicator for radical lymph-node dissection surgery in patients with cN0 squamous cell carcinoma of the middle thoracic esophagus.Surg Today. 2019 Feb;49(2):158-169. doi: 10.1007/s00595-018-1711-2. Epub 2018 Sep 4.
3 Long noncoding RNA MNX1-AS1 contributes to lung cancer progression through the miR-527/BRF2 pathway.J Cell Physiol. 2019 Aug;234(8):13843-13850. doi: 10.1002/jcp.28064. Epub 2019 Jan 7.
4 Integrative genomic analyses identify BRF2 as a novel lineage-specific oncogene in lung squamous cell carcinoma.PLoS Med. 2010 Jul 27;7(7):e1000315. doi: 10.1371/journal.pmed.1000315.
5 Induction of proto-oncogene BRF2 in breast cancer cells by the dietary soybean isoflavone daidzein.BMC Cancer. 2015 Nov 16;15:905. doi: 10.1186/s12885-015-1914-5.
6 MicroRNA-373 Inhibits Cell Proliferation and Invasion via Targeting BRF2 in Human Non-small Cell Lung Cancer A549 Cell Line.Cancer Res Treat. 2018 Jul;50(3):936-949. doi: 10.4143/crt.2017.302. Epub 2017 Oct 12.
7 TFIIB-related factor 2 is associated with poor prognosis of nonsmall cell lung cancer patients through promoting tumor epithelial-mesenchymal transition.Biomed Res Int. 2014;2014:530786. doi: 10.1155/2014/530786. Epub 2014 Mar 17.
8 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
9 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
10 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
11 Epigenetic changes in individuals with arsenicosis. Chem Res Toxicol. 2011 Feb 18;24(2):165-7. doi: 10.1021/tx1004419. Epub 2011 Feb 4.
12 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
13 The DNA methyltransferase inhibitors azacitidine, decitabine and zebularine exert differential effects on cancer gene expression in acute myeloid leukemia cells. Leukemia. 2009 Jun;23(6):1019-28.
14 THC exposure of human iPSC neurons impacts genes associated with neuropsychiatric disorders. Transl Psychiatry. 2018 Apr 25;8(1):89. doi: 10.1038/s41398-018-0137-3.
15 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
16 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
17 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
18 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.