General Information of Drug Off-Target (DOT) (ID: OT2LOUQ1)

DOT Name Transforming growth factor beta-3 proprotein (TGFB3)
Gene Name TGFB3
Related Disease
Rienhoff syndrome ( )
Familial thoracic aortic aneurysm and aortic dissection ( )
Arrhythmogenic right ventricular cardiomyopathy ( )
Arrhythmogenic right ventricular dysplasia 1 ( )
Loeys-Dietz syndrome ( )
UniProt ID
TGFB3_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1KTZ; 1TGJ; 1TGK; 2PJY; 3EO1; 4UM9
Pfam ID
PF00019 ; PF00688
Sequence
MKMHLQRALVVLALLNFATVSLSLSTCTTLDFGHIKKKRVEAIRGQILSKLRLTSPPEPT
VMTHVPYQVLALYNSTRELLEEMHGEREEGCTQENTESEYYAKEIHKFDMIQGLAEHNEL
AVCPKGITSKVFRFNVSSVEKNRTNLFRAEFRVLRVPNPSSKRNEQRIELFQILRPDEHI
AKQRYIGGKNLPTRGTAEWLSFDVTDTVREWLLRRESNLGLEISIHCPCHTFQPNGDILE
NIHEVMEIKFKGVDNEDDHGRGDLGRLKKQKDHHNPHLILMMIPPHRLDNPGQGGQRKKR
ALDTNYCFRNLEENCCVRPLYIDFRQDLGWKWVHEPKGYYANFCSGPCPYLRSADTTHST
VLGLYNTLNPEASASPCCVPQDLEPLTILYYVGRTPKVEQLSNMVVKSCKCS
Function
Transforming growth factor beta-3 proprotein: Precursor of the Latency-associated peptide (LAP) and Transforming growth factor beta-3 (TGF-beta-3) chains, which constitute the regulatory and active subunit of TGF-beta-3, respectively; [Latency-associated peptide]: Required to maintain the Transforming growth factor beta-3 (TGF-beta-3) chain in a latent state during storage in extracellular matrix. Associates non-covalently with TGF-beta-3 and regulates its activation via interaction with 'milieu molecules', such as LTBP1 and LRRC32/GARP, that control activation of TGF-beta-3. Interaction with integrins results in distortion of the Latency-associated peptide chain and subsequent release of the active TGF-beta-3; Transforming growth factor beta-3: Multifunctional protein that regulates embryogenesis and cell differentiation and is required in various processes such as secondary palate development. Activation into mature form follows different steps: following cleavage of the proprotein in the Golgi apparatus, Latency-associated peptide (LAP) and Transforming growth factor beta-3 (TGF-beta-3) chains remain non-covalently linked rendering TGF-beta-3 inactive during storage in extracellular matrix. At the same time, LAP chain interacts with 'milieu molecules', such as LTBP1 and LRRC32/GARP that control activation of TGF-beta-3 and maintain it in a latent state during storage in extracellular milieus. TGF-beta-3 is released from LAP by integrins: integrin-binding results in distortion of the LAP chain and subsequent release of the active TGF-beta-3. Once activated following release of LAP, TGF-beta-3 acts by binding to TGF-beta receptors (TGFBR1 and TGFBR2), which transduce signal.
KEGG Pathway
MAPK sig.ling pathway (hsa04010 )
Cytokine-cytokine receptor interaction (hsa04060 )
FoxO sig.ling pathway (hsa04068 )
Cell cycle (hsa04110 )
Cellular senescence (hsa04218 )
TGF-beta sig.ling pathway (hsa04350 )
Hippo sig.ling pathway (hsa04390 )
AGE-RAGE sig.ling pathway in diabetic complications (hsa04933 )
Leishmaniasis (hsa05140 )
Chagas disease (hsa05142 )
Malaria (hsa05144 )
Toxoplasmosis (hsa05145 )
Amoebiasis (hsa05146 )
Tuberculosis (hsa05152 )
Hepatitis B (hsa05161 )
Human T-cell leukemia virus 1 infection (hsa05166 )
Pathways in cancer (hsa05200 )
Colorectal cancer (hsa05210 )
Re.l cell carcinoma (hsa05211 )
Pancreatic cancer (hsa05212 )
Chronic myeloid leukemia (hsa05220 )
Hepatocellular carcinoma (hsa05225 )
Gastric cancer (hsa05226 )
Inflammatory bowel disease (hsa05321 )
Rheumatoid arthritis (hsa05323 )
Hypertrophic cardiomyopathy (hsa05410 )
Dilated cardiomyopathy (hsa05414 )
Diabetic cardiomyopathy (hsa05415 )
Reactome Pathway
Molecules associated with elastic fibres (R-HSA-2129379 )
TGF-beta receptor signaling activates SMADs (R-HSA-2173789 )
ECM proteoglycans (R-HSA-3000178 )
Platelet degranulation (R-HSA-114608 )

Molecular Interaction Atlas (MIA) of This DOT

5 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Rienhoff syndrome DISWC4XA Definitive Autosomal dominant [1]
Familial thoracic aortic aneurysm and aortic dissection DIS069FB Supportive Autosomal dominant [2]
Arrhythmogenic right ventricular cardiomyopathy DIS3V2BE Limited Autosomal dominant [3]
Arrhythmogenic right ventricular dysplasia 1 DIS6FOCK Limited Autosomal dominant [4]
Loeys-Dietz syndrome DIS4FUPZ Limited Autosomal recessive [4]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Transforming growth factor beta-3 proprotein (TGFB3). [5]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Transforming growth factor beta-3 proprotein (TGFB3). [24]
------------------------------------------------------------------------------------
25 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Transforming growth factor beta-3 proprotein (TGFB3). [6]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Transforming growth factor beta-3 proprotein (TGFB3). [7]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Transforming growth factor beta-3 proprotein (TGFB3). [8]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Transforming growth factor beta-3 proprotein (TGFB3). [9]
Arsenic DMTL2Y1 Approved Arsenic decreases the expression of Transforming growth factor beta-3 proprotein (TGFB3). [10]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Transforming growth factor beta-3 proprotein (TGFB3). [11]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Transforming growth factor beta-3 proprotein (TGFB3). [12]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Transforming growth factor beta-3 proprotein (TGFB3). [13]
Testosterone DM7HUNW Approved Testosterone increases the expression of Transforming growth factor beta-3 proprotein (TGFB3). [13]
Marinol DM70IK5 Approved Marinol affects the expression of Transforming growth factor beta-3 proprotein (TGFB3). [14]
Fulvestrant DM0YZC6 Approved Fulvestrant decreases the expression of Transforming growth factor beta-3 proprotein (TGFB3). [15]
Dexamethasone DMMWZET Approved Dexamethasone increases the expression of Transforming growth factor beta-3 proprotein (TGFB3). [16]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol increases the expression of Transforming growth factor beta-3 proprotein (TGFB3). [17]
Obeticholic acid DM3Q1SM Approved Obeticholic acid increases the expression of Transforming growth factor beta-3 proprotein (TGFB3). [18]
Acocantherin DM7JT24 Approved Acocantherin decreases the expression of Transforming growth factor beta-3 proprotein (TGFB3). [19]
Phenytoin DMNOKBV Approved Phenytoin increases the expression of Transforming growth factor beta-3 proprotein (TGFB3). [20]
Vitamin A DMJ2AH4 Approved Vitamin A increases the expression of Transforming growth factor beta-3 proprotein (TGFB3). [21]
Diazepam DM08E9O Approved Diazepam decreases the expression of Transforming growth factor beta-3 proprotein (TGFB3). [22]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of Transforming growth factor beta-3 proprotein (TGFB3). [23]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Transforming growth factor beta-3 proprotein (TGFB3). [25]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Transforming growth factor beta-3 proprotein (TGFB3). [26]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Transforming growth factor beta-3 proprotein (TGFB3). [23]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of Transforming growth factor beta-3 proprotein (TGFB3). [27]
Deguelin DMXT7WG Investigative Deguelin decreases the expression of Transforming growth factor beta-3 proprotein (TGFB3). [28]
Butanoic acid DMTAJP7 Investigative Butanoic acid increases the expression of Transforming growth factor beta-3 proprotein (TGFB3). [29]
------------------------------------------------------------------------------------
⏷ Show the Full List of 25 Drug(s)
1 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
Cordycepin DM72Y01 Investigative Cordycepin increases the secretion of Transforming growth factor beta-3 proprotein (TGFB3). [30]
------------------------------------------------------------------------------------

References

1 De novo mutation of the latency-associated peptide domain of TGFB3 in a patient with overgrowth and Loeys-Dietz syndrome features. Am J Med Genet A. 2014 Aug;164A(8):2141-3. doi: 10.1002/ajmg.a.36593. Epub 2014 May 5.
2 A mutation in TGFB3 associated with a syndrome of low muscle mass, growth retardation, distal arthrogryposis and clinical features overlapping with Marfan and Loeys-Dietz syndrome. Am J Med Genet A. 2013 Aug;161A(8):2040-6. doi: 10.1002/ajmg.a.36056. Epub 2013 Jul 3.
3 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
4 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
5 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
6 Integrative "-Omics" analysis in primary human hepatocytes unravels persistent mechanisms of cyclosporine A-induced cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
7 Retinoic acid receptor alpha amplifications and retinoic acid sensitivity in breast cancers. Clin Breast Cancer. 2013 Oct;13(5):401-8.
8 The thioxotriazole copper(II) complex A0 induces endoplasmic reticulum stress and paraptotic death in human cancer cells. J Biol Chem. 2009 Sep 4;284(36):24306-19.
9 Analysis of estrogen agonism and antagonism of tamoxifen, raloxifene, and ICI182780 in endometrial cancer cells: a putative role for the epidermal growth factor receptor ligand amphiregulin. J Soc Gynecol Investig. 2005 Oct;12(7):e55-67.
10 Pattern of expression of apoptosis and inflammatory genes in humans exposed to arsenic and/or fluoride. Sci Total Environ. 2010 Jan 15;408(4):760-7. doi: 10.1016/j.scitotenv.2009.11.016. Epub 2009 Dec 4.
11 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
12 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
13 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
14 JunD is involved in the antiproliferative effect of Delta9-tetrahydrocannabinol on human breast cancer cells. Oncogene. 2008 Aug 28;27(37):5033-44.
15 Arsenite and cadmium promote the development of mammary tumors. Carcinogenesis. 2020 Jul 14;41(7):1005-1014. doi: 10.1093/carcin/bgz176.
16 Glucocorticoids inhibit cell death in ovarian cancer and up-regulate caspase inhibitor cIAP2. Clin Cancer Res. 2005 Sep 1;11(17):6325-32. doi: 10.1158/1078-0432.CCR-05-0182.
17 Assaying estrogenicity by quantitating the expression levels of endogenous estrogen-regulated genes. Environ Health Perspect. 2000 May;108(5):403-12.
18 Pharmacotoxicology of clinically-relevant concentrations of obeticholic acid in an organotypic human hepatocyte system. Toxicol In Vitro. 2017 Mar;39:93-103.
19 Ouabain impairs cell migration, and invasion and alters gene expression of human osteosarcoma U-2 OS cells. Environ Toxicol. 2017 Nov;32(11):2400-2413. doi: 10.1002/tox.22453. Epub 2017 Aug 10.
20 Role of phenytoin in wound healing: microarray analysis of early transcriptional responses in human dermal fibroblasts. Biochem Biophys Res Commun. 2004 Feb 13;314(3):661-6. doi: 10.1016/j.bbrc.2003.12.146.
21 Retinoic acid, GABA-ergic, and TGF-beta signaling systems are involved in human cleft palate fibroblast phenotype. Mol Med. 2006 Sep-Oct;12(9-10):237-45. doi: 10.2119/2006C00026.Baroni.
22 Patterns of some extracellular matrix gene expression are similar in cells from cleft lip-palate patients and in human palatal fibroblasts exposed to diazepam in culture. Toxicology. 2009 Mar 4;257(1-2):10-6. doi: 10.1016/j.tox.2008.12.002. Epub 2008 Dec 9.
23 Oestrogenic potencies of Zeranol, oestradiol, diethylstilboestrol, Bisphenol-A and genistein: implications for exposure assessment of potential endocrine disrupters. Hum Reprod. 2001 May;16(5):1037-45.
24 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
25 CCAT1 is an enhancer-templated RNA that predicts BET sensitivity in colorectal cancer. J Clin Invest. 2016 Feb;126(2):639-52.
26 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
27 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
28 Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Arch Toxicol. 2021 Feb;95(2):591-615. doi: 10.1007/s00204-020-02970-5. Epub 2021 Jan 29.
29 Cytokine responses of intestinal epithelial-like Caco-2 cells to non-pathogenic and opportunistic pathogenic yeasts in the presence of butyric acid. Biosci Biotechnol Biochem. 2007 Oct;71(10):2428-34.
30 Adenosine and Cordycepin Accelerate Tissue Remodeling Process through Adenosine Receptor Mediated Wnt/-Catenin Pathway Stimulation by Regulating GSK3b Activity. Int J Mol Sci. 2021 May 25;22(11):5571. doi: 10.3390/ijms22115571.