General Information of Drug Off-Target (DOT) (ID: OT36W9O5)

DOT Name Leukemia inhibitory factor receptor (LIFR)
Synonyms LIF receptor; LIF-R; CD antigen CD118
Gene Name LIFR
Related Disease
Obsolete Stve-Wiedemann syndrome ( )
Stve-Wiedemann syndrome 1 ( )
UniProt ID
LIFR_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
3E0G; 8D6A; 8D74; 8D7R
Pfam ID
PF00041 ; PF21177 ; PF17971 ; PF18207
Sequence
MMDIYVCLKRPSWMVDNKRMRTASNFQWLLSTFILLYLMNQVNSQKKGAPHDLKCVTNNL
QVWNCSWKAPSGTGRGTDYEVCIENRSRSCYQLEKTSIKIPALSHGDYEITINSLHDFGS
STSKFTLNEQNVSLIPDTPEILNLSADFSTSTLYLKWNDRGSVFPHRSNVIWEIKVLRKE
SMELVKLVTHNTTLNGKDTLHHWSWASDMPLECAIHFVEIRCYIDNLHFSGLEEWSDWSP
VKNISWIPDSQTKVFPQDKVILVGSDITFCCVSQEKVLSALIGHTNCPLIHLDGENVAIK
IRNISVSASSGTNVVFTTEDNIFGTVIFAGYPPDTPQQLNCETHDLKEIICSWNPGRVTA
LVGPRATSYTLVESFSGKYVRLKRAEAPTNESYQLLFQMLPNQEIYNFTLNAHNPLGRSQ
STILVNITEKVYPHTPTSFKVKDINSTAVKLSWHLPGNFAKINFLCEIEIKKSNSVQEQR
NVTIKGVENSSYLVALDKLNPYTLYTFRIRCSTETFWKWSKWSNKKQHLTTEASPSKGPD
TWREWSSDGKNLIIYWKPLPINEANGKILSYNVSCSSDEETQSLSEIPDPQHKAEIRLDK
NDYIISVVAKNSVGSSPPSKIASMEIPNDDLKIEQVVGMGKGILLTWHYDPNMTCDYVIK
WCNSSRSEPCLMDWRKVPSNSTETVIESDEFRPGIRYNFFLYGCRNQGYQLLRSMIGYIE
ELAPIVAPNFTVEDTSADSILVKWEDIPVEELRGFLRGYLFYFGKGERDTSKMRVLESGR
SDIKVKNITDISQKTLRIADLQGKTSYHLVLRAYTDGGVGPEKSMYVVTKENSVGLIIAI
LIPVAVAVIVGVVTSILCYRKREWIKETFYPDIPNPENCKALQFQKSVCEGSSALKTLEM
NPCTPNNVEVLETRSAFPKIEDTEIISPVAERPEDRSDAEPENHVVVSYCPPIIEEEIPN
PAADEAGGTAQVIYIDVQSMYQPQAKPEEEQENDPVGGAGYKPQMHLPINSTVEDIAAEE
DLDKTAGYRPQANVNTWNLVSPDSPRSIDSNSEIVSFGSPCSINSRQFLIPPKDEDSPKS
NGGGWSFTNFFQNKPND
Function Signal-transducing molecule. May have a common pathway with IL6ST. The soluble form inhibits the biological activity of LIF by blocking its binding to receptors on target cells.
KEGG Pathway
Cytokine-cytokine receptor interaction (hsa04060 )
Sig.ling pathways regulating pluripotency of stem cells (hsa04550 )
JAK-STAT sig.ling pathway (hsa04630 )
Reactome Pathway
RUNX1 regulates transcription of genes involved in interleukin signaling (R-HSA-8939247 )
IL-6-type cytokine receptor ligand interactions (R-HSA-6788467 )

Molecular Interaction Atlas (MIA) of This DOT

2 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Obsolete Stve-Wiedemann syndrome DISKSJ1M Definitive Autosomal recessive [1]
Stve-Wiedemann syndrome 1 DISBJ81H Definitive Autosomal recessive [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
22 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Leukemia inhibitory factor receptor (LIFR). [3]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Leukemia inhibitory factor receptor (LIFR). [4]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Leukemia inhibitory factor receptor (LIFR). [5]
Acetaminophen DMUIE76 Approved Acetaminophen affects the expression of Leukemia inhibitory factor receptor (LIFR). [6]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Leukemia inhibitory factor receptor (LIFR). [7]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Leukemia inhibitory factor receptor (LIFR). [8]
Arsenic DMTL2Y1 Approved Arsenic affects the expression of Leukemia inhibitory factor receptor (LIFR). [9]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Leukemia inhibitory factor receptor (LIFR). [10]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Leukemia inhibitory factor receptor (LIFR). [11]
Testosterone DM7HUNW Approved Testosterone increases the expression of Leukemia inhibitory factor receptor (LIFR). [11]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Leukemia inhibitory factor receptor (LIFR). [12]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Leukemia inhibitory factor receptor (LIFR). [13]
Gemcitabine DMSE3I7 Approved Gemcitabine increases the expression of Leukemia inhibitory factor receptor (LIFR). [14]
Rofecoxib DM3P5DA Approved Rofecoxib decreases the expression of Leukemia inhibitory factor receptor (LIFR). [15]
Letrozole DMH07Y3 Approved Letrozole increases the expression of Leukemia inhibitory factor receptor (LIFR). [17]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Leukemia inhibitory factor receptor (LIFR). [18]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Leukemia inhibitory factor receptor (LIFR). [19]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Leukemia inhibitory factor receptor (LIFR). [13]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 increases the expression of Leukemia inhibitory factor receptor (LIFR). [21]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Leukemia inhibitory factor receptor (LIFR). [22]
Glyphosate DM0AFY7 Investigative Glyphosate decreases the expression of Leukemia inhibitory factor receptor (LIFR). [23]
OXYBENZONE DMMZYX6 Investigative OXYBENZONE increases the expression of Leukemia inhibitory factor receptor (LIFR). [24]
------------------------------------------------------------------------------------
⏷ Show the Full List of 22 Drug(s)
1 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
Gentamicin DMKINJO Approved Gentamicin decreases the degradation of Leukemia inhibitory factor receptor (LIFR). [16]
------------------------------------------------------------------------------------
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Leukemia inhibitory factor receptor (LIFR). [20]
------------------------------------------------------------------------------------

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Null leukemia inhibitory factor receptor (LIFR) mutations in Stuve-Wiedemann/Schwartz-Jampel type 2 syndrome. Am J Hum Genet. 2004 Feb;74(2):298-305. doi: 10.1086/381715. Epub 2004 Jan 21.
3 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
4 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
5 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
6 Identification of potential biomarkers of hepatitis B-induced acute liver failure using hepatic cells derived from human skin precursors. Toxicol In Vitro. 2015 Sep;29(6):1231-9. doi: 10.1016/j.tiv.2014.10.012. Epub 2014 Oct 24.
7 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
8 Persistent and non-persistent changes in gene expression result from long-term estrogen exposure of MCF-7 breast cancer cells. J Steroid Biochem Mol Biol. 2011 Feb;123(3-5):140-50.
9 Prenatal arsenic exposure and shifts in the newborn proteome: interindividual differences in tumor necrosis factor (TNF)-responsive signaling. Toxicol Sci. 2014 Jun;139(2):328-37. doi: 10.1093/toxsci/kfu053. Epub 2014 Mar 27.
10 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
11 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
12 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
13 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
14 Gene expression profiling of breast cancer cells in response to gemcitabine: NF-kappaB pathway activation as a potential mechanism of resistance. Breast Cancer Res Treat. 2007 Apr;102(2):157-72.
15 Rofecoxib modulates multiple gene expression pathways in a clinical model of acute inflammatory pain. Pain. 2007 Mar;128(1-2):136-47.
16 In vitro readthrough of termination codons by gentamycin in the Stve-Wiedemann Syndrome. Eur J Hum Genet. 2010 Jan;18(1):130-2. doi: 10.1038/ejhg.2009.122.
17 Clomiphene citrate versus letrozole: molecular analysis of the endometrium in women with polycystic ovary syndrome. Fertil Steril. 2011 Oct;96(4):1051-6. doi: 10.1016/j.fertnstert.2011.07.1092.
18 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
19 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
20 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
21 Highly active combination of BRD4 antagonist and histone deacetylase inhibitor against human acute myelogenous leukemia cells. Mol Cancer Ther. 2014 May;13(5):1142-54.
22 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
23 Glyphosate-based herbicides at low doses affect canonical pathways in estrogen positive and negative breast cancer cell lines. PLoS One. 2019 Jul 11;14(7):e0219610. doi: 10.1371/journal.pone.0219610. eCollection 2019.
24 Chromatin modifiers: A new class of pollutants with potential epigenetic effects revealed by in vitro assays and transcriptomic analyses. Toxicology. 2023 Jan 15;484:153413. doi: 10.1016/j.tox.2022.153413. Epub 2022 Dec 26.