General Information of Drug Off-Target (DOT) (ID: OT38HXJP)

DOT Name Cysteine-rich secretory protein LCCL domain-containing 1 (CRISPLD1)
Synonyms CocoaCrisp; Cysteine-rich secretory protein 10; CRISP-10; LCCL domain-containing cysteine-rich secretory protein 1; Trypsin inhibitor Hl
Gene Name CRISPLD1
Related Disease
Coronary atherosclerosis ( )
Coronary heart disease ( )
UniProt ID
CRLD1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00188 ; PF03815
Sequence
MKCTAREWLRVTTVLFMARAIPAMVVPNATLLEKLLEKYMDEDGEWWIAKQRGKRAITDN
DMQSILDLHNKLRSQVYPTASNMEYMTWDVELERSAESWAESCLWEHGPASLLPSIGQNL
GAHWGRYRPPTFHVQSWYDEVKDFSYPYEHECNPYCPFRCSGPVCTHYTQVVWATSNRIG
CAINLCHNMNIWGQIWPKAVYLVCNYSPKGNWWGHAPYKHGRPCSACPPSFGGGCRENLC
YKEGSDRYYPPREEETNEIERQQSQVHDTHVRTRSDDSSRNEVISAQQMSQIVSCEVRLR
DQCKGTTCNRYECPAGCLDSKAKVIGSVHYEMQSSICRAAIHYGIIDNDGGWVDITRQGR
KHYFIKSNRNGIQTIGKYQSANSFTVSKVTVQAVTCETTVEQLCPFHKPASHCPRVYCPR
NCMQANPHYARVIGTRVYSDLSSICRAAVHAGVVRNHGGYVDVMPVDKRKTYIASFQNGI
FSESLQNPPGGKAFRVFAVV

Molecular Interaction Atlas (MIA) of This DOT

2 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Coronary atherosclerosis DISKNDYU Definitive Genetic Variation [1]
Coronary heart disease DIS5OIP1 Definitive Genetic Variation [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Cysteine-rich secretory protein LCCL domain-containing 1 (CRISPLD1). [2]
Fulvestrant DM0YZC6 Approved Fulvestrant increases the methylation of Cysteine-rich secretory protein LCCL domain-containing 1 (CRISPLD1). [10]
------------------------------------------------------------------------------------
11 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Cysteine-rich secretory protein LCCL domain-containing 1 (CRISPLD1). [3]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Cysteine-rich secretory protein LCCL domain-containing 1 (CRISPLD1). [4]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Cysteine-rich secretory protein LCCL domain-containing 1 (CRISPLD1). [5]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Cysteine-rich secretory protein LCCL domain-containing 1 (CRISPLD1). [6]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Cysteine-rich secretory protein LCCL domain-containing 1 (CRISPLD1). [7]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Cysteine-rich secretory protein LCCL domain-containing 1 (CRISPLD1). [8]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Cysteine-rich secretory protein LCCL domain-containing 1 (CRISPLD1). [9]
Ethinyl estradiol DMODJ40 Approved Ethinyl estradiol increases the expression of Cysteine-rich secretory protein LCCL domain-containing 1 (CRISPLD1). [11]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of Cysteine-rich secretory protein LCCL domain-containing 1 (CRISPLD1). [7]
ACYLINE DM9GRTK Phase 2 ACYLINE increases the expression of Cysteine-rich secretory protein LCCL domain-containing 1 (CRISPLD1). [12]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Cysteine-rich secretory protein LCCL domain-containing 1 (CRISPLD1). [13]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Drug(s)

References

1 CRISPLD1 rs12115090 polymorphisms alters antiplatelet potency of clopidogrel in coronary artery disease patients in Chinese Han.Gene. 2018 Dec 15;678:226-232. doi: 10.1016/j.gene.2018.08.027. Epub 2018 Aug 7.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
4 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
5 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
6 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
7 Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res. 2012 Nov;22(11):2153-62.
8 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
9 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
10 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
11 The genomic response of a human uterine endometrial adenocarcinoma cell line to 17alpha-ethynyl estradiol. Toxicol Sci. 2009 Jan;107(1):40-55.
12 Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: therapeutic implications for castration-resistant prostate cancer. Cancer Res. 2007 May 15;67(10):5033-41.
13 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.