General Information of Drug Off-Target (DOT) (ID: OT3VIM3B)

DOT Name Estradiol 17-beta-dehydrogenase 11 (HSD17B11)
Synonyms
EC 1.1.1.62; 17-beta-hydroxysteroid dehydrogenase 11; 17-beta-HSD 11; 17bHSD11; 17betaHSD11; 17-beta-hydroxysteroid dehydrogenase XI; 17-beta-HSD XI; 17betaHSDXI; Cutaneous T-cell lymphoma-associated antigen HD-CL-03; CTCL-associated antigen HD-CL-03; Dehydrogenase/reductase SDR family member 8; Retinal short-chain dehydrogenase/reductase 2; retSDR2; Short chain dehydrogenase/reductase family 16C member 2
Gene Name HSD17B11
UniProt ID
DHB11_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1YB1
EC Number
1.1.1.62
Pfam ID
PF00106
Sequence
MKFLLDILLLLPLLIVCSLESFVKLFIPKRRKSVTGEIVLITGAGHGIGRLTAYEFAKLK
SKLVLWDINKHGLEETAAKCKGLGAKVHTFVVDCSNREDIYSSAKKVKAEIGDVSILVNN
AGVVYTSDLFATQDPQIEKTFEVNVLAHFWTTKAFLPAMTKNNHGHIVTVASAAGHVSVP
FLLAYCSSKFAAVGFHKTLTDELAALQITGVKTTCLCPNFVNTGFIKNPSTSLGPTLEPE
EVVNRLMHGILTEQKMIFIPSSIAFLTTLERILPERFLAVLKRKISVKFDAVIGYKMKAQ
Function
Can convert androstan-3-alpha,17-beta-diol (3-alpha-diol) to androsterone in vitro, suggesting that it may participate in androgen metabolism during steroidogenesis. May act by metabolizing compounds that stimulate steroid synthesis and/or by generating metabolites that inhibit it. Has no activity toward DHEA (dehydroepiandrosterone), or A-dione (4-androste-3,17-dione), and only a slight activity toward testosterone to A-dione. Tumor-associated antigen in cutaneous T-cell lymphoma.
Tissue Specificity
Present at high level in steroidogenic cells such as syncytiotrophoblasts, sebaceous gland, Leydig cells, and granulosa cells of the dominant follicle and corpus luteum. In lung, it is detected in the ciliated epithelium and in acini of adult trachea, in bronchioles, but not in alveoli. In the eye, it is detected in the nonpigmented epithelium of the ciliary body and, at lower level, in the inner nuclear layer of the retina (at protein level). Widely expressed. Highly expressed in retina, pancreas, kidney, liver, lung, adrenal, small intestine, ovary and heart.
KEGG Pathway
Steroid hormone biosynthesis (hsa00140 )
Metabolic pathways (hsa01100 )
Reactome Pathway
Estrogen biosynthesis (R-HSA-193144 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
19 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Estradiol 17-beta-dehydrogenase 11 (HSD17B11). [1]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Estradiol 17-beta-dehydrogenase 11 (HSD17B11). [2]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Estradiol 17-beta-dehydrogenase 11 (HSD17B11). [3]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Estradiol 17-beta-dehydrogenase 11 (HSD17B11). [4]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Estradiol 17-beta-dehydrogenase 11 (HSD17B11). [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Estradiol 17-beta-dehydrogenase 11 (HSD17B11). [6]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Estradiol 17-beta-dehydrogenase 11 (HSD17B11). [7]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Estradiol 17-beta-dehydrogenase 11 (HSD17B11). [8]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Estradiol 17-beta-dehydrogenase 11 (HSD17B11). [9]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Estradiol 17-beta-dehydrogenase 11 (HSD17B11). [10]
Testosterone DM7HUNW Approved Testosterone increases the expression of Estradiol 17-beta-dehydrogenase 11 (HSD17B11). [10]
Progesterone DMUY35B Approved Progesterone increases the expression of Estradiol 17-beta-dehydrogenase 11 (HSD17B11). [11]
Menadione DMSJDTY Approved Menadione affects the expression of Estradiol 17-beta-dehydrogenase 11 (HSD17B11). [9]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Estradiol 17-beta-dehydrogenase 11 (HSD17B11). [12]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Estradiol 17-beta-dehydrogenase 11 (HSD17B11). [13]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Estradiol 17-beta-dehydrogenase 11 (HSD17B11). [14]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Estradiol 17-beta-dehydrogenase 11 (HSD17B11). [15]
Deguelin DMXT7WG Investigative Deguelin increases the expression of Estradiol 17-beta-dehydrogenase 11 (HSD17B11). [16]
Paraquat DMR8O3X Investigative Paraquat increases the expression of Estradiol 17-beta-dehydrogenase 11 (HSD17B11). [17]
------------------------------------------------------------------------------------
⏷ Show the Full List of 19 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Octanal DMTN0OK Investigative Octanal increases the methylation of Estradiol 17-beta-dehydrogenase 11 (HSD17B11). [18]
------------------------------------------------------------------------------------

References

1 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
4 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
5 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res. 2012 Nov;22(11):2153-62.
8 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
9 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
10 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
11 Coordinate up-regulation of TMEM97 and cholesterol biosynthesis genes in normal ovarian surface epithelial cells treated with progesterone: implications for pathogenesis of ovarian cancer. BMC Cancer. 2007 Dec 11;7:223.
12 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
13 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
14 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
15 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
16 Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Arch Toxicol. 2021 Feb;95(2):591-615. doi: 10.1007/s00204-020-02970-5. Epub 2021 Jan 29.
17 An in vitro strategy using multiple human induced pluripotent stem cell-derived models to assess the toxicity of chemicals: A case study on paraquat. Toxicol In Vitro. 2022 Jun;81:105333. doi: 10.1016/j.tiv.2022.105333. Epub 2022 Feb 16.
18 DNA Methylome Analysis of Saturated Aliphatic Aldehydes in Pulmonary Toxicity. Sci Rep. 2018 Jul 12;8(1):10497. doi: 10.1038/s41598-018-28813-z.