General Information of Drug Off-Target (DOT) (ID: OT3VP1D9)

DOT Name Hypermethylated in cancer 2 protein (HIC2)
Synonyms Hic-2; HIC1-related gene on chromosome 22 protein; Hic-3; Zinc finger and BTB domain-containing protein 30
Gene Name HIC2
Related Disease
Bladder cancer ( )
Urinary bladder cancer ( )
Urinary bladder neoplasm ( )
Congenital heart disease ( )
UniProt ID
HIC2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
7TXC
Pfam ID
PF00651 ; PF00096
Sequence
MVSGPLALRWCAWAGRGDMGPDMELPSHSKQLLLQLNQQRTKGFLCDVIIMVENSIFRAH
KNVLAASSIYFKSLVLHDNLINLDTDMVSSTVFQQILDFIYTGKLLPSDQPAEPNFSTLL
TAASYLQLPELAALCRRKLKRAGKPFGSGRAGSTGMGRPPRSQRLSTASVIQARYQGLVD
GRKGAHAPQELPQAKGSDDELFLGGSNQDSVQGLGRAVCPAGGEAGLGGCSSSTNGSSGG
CEQELGLDLSKKSPPLPPATPGPHLTPDDAAQLSDSQHGSPPAASAPPVANSASYSELGG
TPDEPMDLEGAEDNHLSLLEAPGGQPRKSLRHSTRKKEWGKKEPVAGSPFERREAGPKGP
CPGEEGEGVGDRVPNGILASGAGPSGPYGEPPYPCKEEEENGKDASEDSAQSGSEGGSGH
ASAHYMYRQEGYETVSYGDNLYVCIPCAKGFPSSEQLNAHVETHTEEELFIKEEGAYETG
SGGAEEEAEDLSAPSAAYTAEPRPFKCSVCEKTYKDPATLRQHEKTHWLTRPFPCNICGK
MFTQRGTMTRHMRSHLGLKPFACDECGMRFTRQYRLTEHMRVHSGEKPYECQLCGGKFTQ
QRNLISHLRMHTSPS
Function Transcriptional repressor.
Tissue Specificity Highest levels in cerebellum.

Molecular Interaction Atlas (MIA) of This DOT

4 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Bladder cancer DISUHNM0 Strong Biomarker [1]
Urinary bladder cancer DISDV4T7 Strong Biomarker [1]
Urinary bladder neoplasm DIS7HACE Strong Biomarker [1]
Congenital heart disease DISQBA23 Limited Biomarker [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Fluorouracil DMUM7HZ Approved Hypermethylated in cancer 2 protein (HIC2) affects the response to substance of Fluorouracil. [14]
------------------------------------------------------------------------------------
8 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate affects the expression of Hypermethylated in cancer 2 protein (HIC2). [3]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Hypermethylated in cancer 2 protein (HIC2). [4]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Hypermethylated in cancer 2 protein (HIC2). [5]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Hypermethylated in cancer 2 protein (HIC2). [6]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Hypermethylated in cancer 2 protein (HIC2). [8]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Hypermethylated in cancer 2 protein (HIC2). [10]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Hypermethylated in cancer 2 protein (HIC2). [12]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Hypermethylated in cancer 2 protein (HIC2). [13]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Drug(s)
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Hypermethylated in cancer 2 protein (HIC2). [7]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Hypermethylated in cancer 2 protein (HIC2). [9]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the phosphorylation of Hypermethylated in cancer 2 protein (HIC2). [11]
------------------------------------------------------------------------------------

References

1 The DNA methylation-regulated miR-193a-3p dictates the multi-chemoresistance of bladder cancer via repression of SRSF2/PLAU/HIC2 expression.Cell Death Dis. 2014 Sep 4;5(9):e1402. doi: 10.1038/cddis.2014.367.
2 HIC2 is a novel dosage-dependent regulator of cardiac development located within the distal 22q11 deletion syndrome region.Circ Res. 2014 Jun 20;115(1):23-31. doi: 10.1161/CIRCRESAHA.115.303300. Epub 2014 Apr 18.
3 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
4 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
5 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
6 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
7 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
8 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
9 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
10 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
11 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
12 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.
13 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
14 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.