General Information of Disease (ID: DISQBA23)

Disease Name Congenital heart disease
Synonyms
heart-congenital defect; defects, congenital heart; abnormalities, heart; heart abnormality; heart defect, congenital; heart, malformation Of; heart abnormalities; defect, congenital heart; Abnormality, heart; heart malformation; congenital heart defects; congenital anomaly of heart; congenital heart defect; heart defect
Definition A heart disease that is present at birth. Representative examples include atrial septal defect, ventricular septal defect, tetralogy of Fallot, and patent foramen ovale.
Disease Hierarchy
DISVJUAP: Congenital anomaly of cardiovascular system
DISVO1I5: Cardiac disease
DISQBA23: Congenital heart disease
Disease Identifiers
MONDO ID
MONDO_0005453
UMLS CUI
C0152021
MedGen ID
57501
SNOMED CT ID
13213009

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 26 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
ACVR1 TTJNBQA Limited Autosomal dominant [1]
ADAM17 TT6AZXG Limited Autosomal dominant [1]
BMP10 TTTG6H1 Limited Autosomal dominant [1]
BMPR2 TTGKF90 Limited Autosomal dominant [1]
CBS TTVZJ7G Limited Genetic Variation [2]
CDH2 TT1WS0T Limited Autosomal dominant [1]
FOXC2 TTLBAP1 Limited Biomarker [3]
GPR182 TTT23CG Limited Biomarker [4]
KDM5A TTIG67W Limited Autosomal dominant [1]
MYH7 TTNIMDP Limited Autosomal dominant [1]
NODAL TTK2O1Q Limited Genetic Variation [5]
NRP1 TTIPJCB Limited Autosomal recessive [1]
PDGFRA TT8FYO9 Limited Autosomal dominant [1]
PTGIR TTOFYT1 Limited Biomarker [6]
TDGF1 TTN7HMG Limited Genetic Variation [7]
FOXP1 TT0MUCI Disputed Autosomal dominant [1]
HDAC1 TT6R7JZ Disputed Autosomal dominant [1]
ID2 TTW8A5N Disputed Autosomal dominant [1]
NTRK3 TTXABCW Disputed Autosomal dominant [1]
ABL1 TT6B75U moderate Genetic Variation [8]
ETS1 TTTGPSD Moderate Autosomal dominant [1]
GATA4 TT1VDN2 moderate Biomarker [9]
BMPR2 TTGKF90 Strong Genetic Variation [10]
FGF10 TTNPEFX Strong Genetic Variation [11]
MTR TTUTO39 Strong Genetic Variation [12]
TNNI3 TTNLDK6 Strong Biomarker [13]
------------------------------------------------------------------------------------
⏷ Show the Full List of 26 DTT(s)
This Disease Is Related to 3 DTP Molecule(s)
Gene Name DTP ID Evidence Level Mode of Inheritance REF
SLC24A4 DTQWF14 Limited Altered Expression [14]
SLC26A3 DTN1FMD Strong Biomarker [15]
SLC50A1 DTI9CQU Strong Genetic Variation [16]
------------------------------------------------------------------------------------
This Disease Is Related to 4 DME Molecule(s)
Gene Name DME ID Evidence Level Mode of Inheritance REF
FMO5 DEBMX7C Disputed Autosomal dominant [1]
ALDH1A2 DEKN1H4 moderate Biomarker [17]
CHDH DEAHED0 Strong Biomarker [18]
MTRR DE6NIY9 Strong Genetic Variation [19]
------------------------------------------------------------------------------------
This Disease Is Related to 105 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
CRKL OTOYSD1R No Known Unknown [1]
ACTC1 OTJU04B1 Limited Altered Expression [20]
ACVR1 OT4JATFE Limited Autosomal dominant [1]
ADAM17 OTTM6KRB Limited Autosomal dominant [1]
AHDC1 OTQ1VL2W Limited Genetic Variation [21]
ANKRD1 OTHJ7JV9 Limited Altered Expression [22]
BCL9 OTRBIPR4 Limited Autosomal dominant [1]
BMP10 OTA3QKKG Limited Autosomal dominant [1]
BMPR2 OTM9W547 Limited Autosomal dominant [1]
CDH10 OTK3D5WP Limited Biomarker [23]
CDH2 OTH0Y56P Limited Autosomal dominant [1]
CFC1 OT5DHGI8 Limited Genetic Variation [24]
CHD5 OTS5EVHH Limited Genetic Variation [25]
CHRD OTNM60Y1 Limited Autosomal recessive [1]
CRELD1 OTBSPZFP Limited Autosomal dominant [1]
DAND5 OTWNWQDJ Limited Genetic Variation [26]
DSCAM OTL7PRMK Limited Altered Expression [27]
EPRS1 OTXK0FLB Limited Biomarker [28]
FBLN2 OTEHR7N7 Limited Autosomal dominant [1]
FIGN OTJF6EZR Limited Biomarker [29]
GALNT1 OTO3RO36 Limited Biomarker [30]
GDF1 OTZ1VRBH Limited Genetic Variation [31]
GET1 OTQJU3OJ Limited Genetic Variation [25]
HAND2 OTCXYW4Y Limited Biomarker [32]
HBG1 OTVL4NSU Limited Genetic Variation [33]
HIC2 OT3VP1D9 Limited Biomarker [34]
HIRA OTON40EJ Limited Genetic Variation [35]
IHH OT1DWGXC Limited Genetic Variation [36]
IMPACT OTQ923OB Limited Biomarker [37]
INO80 OTJBMS8T Limited Genetic Variation [38]
IRX4 OT0TV6WK Limited Autosomal dominant [1]
KCTD10 OT5HFZXU Limited Biomarker [39]
KDM5A OTLYFX8A Limited Autosomal dominant [1]
KLHL3 OTEJ6850 Limited Biomarker [40]
MARCHF3 OT89V4N5 Limited Biomarker [41]
MED13L OTSP1W0F Limited Autosomal dominant [1]
MEF2C OTZGF1Y5 Limited Altered Expression [7]
MESP1 OTY5QDBN Limited Biomarker [42]
MKKS OTLF5T11 Limited Biomarker [43]
MSX1 OT5U41ZP Limited Genetic Variation [44]
MYH7 OT4Z9T8N Limited Autosomal dominant [1]
NKX2-6 OTPPKGTE Limited Autosomal recessive [1]
NRP1 OTCGULYV Limited Autosomal recessive [1]
PDGFRA OTDJXUCN Limited Autosomal dominant [1]
PHC1 OT1JMX8U Limited Biomarker [45]
PNN OT0HXICH Limited Biomarker [28]
PPP1CB OTYFTYFR Limited Genetic Variation [46]
RBM20 OTOQZNKS Limited Biomarker [47]
RBM24 OTQI1AR1 Limited Biomarker [48]
RNF41 OTN1DQOY Limited Genetic Variation [49]
RTN4RL1 OTDKKOE7 Limited Genetic Variation [50]
SFTPA1 OT87XL1U Limited Altered Expression [51]
SFTPA2 OT6SFOMU Limited Altered Expression [51]
SFTPB OTOHS07E Limited Altered Expression [51]
SH3BGR OT13LJ1A Limited Genetic Variation [52]
SRPX OT5B9LXS Limited Biomarker [28]
STX18 OTW4GF3X Limited Genetic Variation [53]
TAMM41 OTXBJ9W5 Limited Genetic Variation [54]
TBCC OTBF0X8R Limited Genetic Variation [55]
TBX2 OTTOT7A9 Limited Genetic Variation [56]
TBX5 OT70PISV Limited Genetic Variation [9]
TEF OTY3LAD9 Limited Biomarker [57]
TFAP2B OTR1T8E9 Limited Genetic Variation [58]
ATE1 OT3QNM39 Disputed Autosomal recessive [1]
CTNNA3 OT9Z0P1E Disputed Unknown [1]
DTNA OTVBIRH2 Disputed Autosomal dominant [1]
FMO5 OTTILF8T Disputed Autosomal dominant [1]
FOXL1 OT89XFPN Disputed Autosomal dominant [1]
FOXP1 OTSG6XGF Disputed Autosomal dominant [1]
HDAC1 OTQDNOXZ Disputed Autosomal dominant [1]
ID2 OT0U1D53 Disputed Autosomal dominant [1]
LEFTY2 OT3RX4QF Disputed Autosomal dominant [1]
NFATC1 OT4TMERS Disputed Autosomal dominant [1]
NFATC2 OTK5T6HZ Disputed Autosomal dominant [1]
NTRK3 OTII30MY Disputed Autosomal dominant [1]
ETS1 OT4LVGDN Moderate Autosomal dominant [1]
HAND1 OTN4IPVV Moderate Autosomal dominant [1]
KLF13 OTMIKHZ4 Moderate Autosomal dominant [1]
ADARB1 OTGKSZEV Strong Altered Expression [59]
BMPR1A OTQOA4ZH Strong Genetic Variation [60]
CHD1L OT7CZK7C Strong Altered Expression [61]
CITED2 OT812TV7 Strong Genetic Variation [62]
CORIN OT4SK7DK Strong Biomarker [63]
DGCR8 OT62LXE4 Strong Altered Expression [64]
DNAH11 OT6IYFVV Strong Genetic Variation [65]
EVC OTRVYMXJ Strong Genetic Variation [66]
GATA5 OTO81B63 Strong Genetic Variation [67]
GATA6 OTO2BC0F Strong Genetic Variation [68]
HOXA1 OTMSOJ7D Strong Genetic Variation [69]
ISL1 OTVNVKAX Strong Biomarker [70]
LMBR1 OTGRQK9V Strong Genetic Variation [71]
MYL3 OTKD3RSX Strong Altered Expression [61]
MYL4 OTURFCSE Strong Altered Expression [61]
MYOCD OTSJNHTH Strong Biomarker [72]
NPHP3 OT8U8ELA Strong Genetic Variation [73]
NREP OT2AZPKK Strong Biomarker [74]
PDSS1 OTXGVHAB Strong Genetic Variation [71]
POC1B OTDIMIRZ Strong CausalMutation [75]
PPM1K OTNZ4N4E Strong Biomarker [76]
RCAN1 OT1MVXC7 Strong Genetic Variation [77]
REC8 OT6JAVXE Strong Genetic Variation [16]
TBX1 OTQLBPRA Strong Biomarker [78]
TBX20 OTMPU2XQ Strong Altered Expression [79]
LRPAP1 OT6DVD2Q Definitive Genetic Variation [80]
SMAD2 OTC6VB4K Definitive Autosomal dominant [1]
------------------------------------------------------------------------------------
⏷ Show the Full List of 105 DOT(s)

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Study on Environmental Causes and SNPs of MTHFR, MS and CBS Genes Related to Congenital Heart Disease.PLoS One. 2015 Jun 2;10(6):e0128646. doi: 10.1371/journal.pone.0128646. eCollection 2015.
3 Foxc2 influences alveolar epithelial cell differentiation during lung development.Dev Growth Differ. 2017 Aug;59(6):501-514. doi: 10.1111/dgd.12368. Epub 2017 Jul 4.
4 Outcome of antibody-mediated rejection compared to acute cellular rejection after pediatric heart transplantation.Pediatr Transplant. 2018 Feb;22(1). doi: 10.1111/petr.13092. Epub 2017 Dec 9.
5 Novel mutations of NODAL gene in Chinese patients with congenital heart disease.Genet Test Mol Biomarkers. 2012 Apr;16(4):306-9. doi: 10.1089/gtmb.2011.0101. Epub 2012 Feb 21.
6 Expression of prostanoid receptors in human ductus arteriosus.Br J Pharmacol. 2003 Feb;138(4):655-9. doi: 10.1038/sj.bjp.0705092.
7 MEF2C regulates outflow tract alignment and transcriptional control of Tdgf1.Development. 2016 Mar 1;143(5):774-9. doi: 10.1242/dev.126383. Epub 2016 Jan 25.
8 Germline mutations in ABL1 cause an autosomal dominant syndrome characterized by congenital heart defects and skeletal malformations. Nat Genet. 2017 Apr;49(4):613-617. doi: 10.1038/ng.3815. Epub 2017 Mar 13.
9 Association of NKX2-5, GATA4, and TBX5 polymorphisms with congenital heart disease in Egyptian children.Mol Genet Genomic Med. 2019 May;7(5):e612. doi: 10.1002/mgg3.612. Epub 2019 Mar 4.
10 BMPR2 mutation is a potential predisposing genetic risk factor for congenital heart disease associated pulmonary vascular disease.Int J Cardiol. 2016 May 15;211:132-6. doi: 10.1016/j.ijcard.2016.02.150. Epub 2016 Mar 7.
11 Congenital heart defects in Fgfr2-IIIb and Fgf10 mutant mice.Cardiovasc Res. 2006 Jul 1;71(1):50-60. doi: 10.1016/j.cardiores.2006.03.021. Epub 2006 Apr 4.
12 Genetic polymorphisms in MTR are associated with non-syndromic congenital heart disease from a family-based case-control study in the Chinese population.Sci Rep. 2019 Mar 25;9(1):5065. doi: 10.1038/s41598-019-41641-z.
13 Early assessment of cardiac troponin I predicts the postoperative cardiac status and clinical course after congenital heart disease surgery.Heart Vessels. 2020 Mar;35(3):417-421. doi: 10.1007/s00380-019-01497-9. Epub 2019 Sep 14.
14 Elevated NCX1 and NCKX4 expression in the patent postnatal ductus arteriosus of ductal-dependent congenital heart disease patients.Pediatr Cardiol. 2015 Apr;36(4):743-51. doi: 10.1007/s00246-014-1070-8. Epub 2014 Dec 12.
15 Respiratory syncytial virus prophylaxis in cystic fibrosis: the Canadian registry of palivizumab data (2005-2016).Eur J Clin Microbiol Infect Dis. 2018 Jul;37(7):1345-1352. doi: 10.1007/s10096-018-3256-0. Epub 2018 May 4.
16 San Luis Valley recombinant chromosome 8 and tetralogy of Fallot: a review of chromosome 8 anomalies and congenital heart disease.Am J Med Genet. 1991 Sep 15;40(4):471-6. doi: 10.1002/ajmg.1320400420.
17 ALDH1A2 (RALDH2) genetic variation in human congenital heart disease.BMC Med Genet. 2009 Nov 3;10:113. doi: 10.1186/1471-2350-10-113.
18 Abnormal Microstructural Development of the Cerebral Cortex in Neonates With Congenital Heart Disease Is Associated With Impaired Cerebral Oxygen Delivery.J Am Heart Assoc. 2019 Mar 5;8(5):e009893. doi: 10.1161/JAHA.118.009893.
19 The roles of MTRR and MTHFR gene polymorphisms in congenital heart diseases: a meta-analysis.Biosci Rep. 2018 Dec 7;38(6):BSR20181160. doi: 10.1042/BSR20181160. Print 2018 Dec 21.
20 Reduced ACTC1 expression might play a role in the onset of congenital heart disease by inducing cardiomyocyte apoptosis.Circ J. 2010 Nov;74(11):2410-8. doi: 10.1253/circj.cj-10-0234. Epub 2010 Oct 15.
21 MATR3 disruption in human and mouse associated with bicuspid aortic valve, aortic coarctation and patent ductus arteriosus.Hum Mol Genet. 2015 Apr 15;24(8):2375-89. doi: 10.1093/hmg/ddv004. Epub 2015 Jan 7.
22 Intracellular ANKRD1 protein levels are regulated by 26S proteasome-mediated degradation.FEBS Lett. 2009 Aug 6;583(15):2486-92. doi: 10.1016/j.febslet.2009.07.001. Epub 2009 Jul 8.
23 Prenatal diagnosis of a familial 5p14.3-p14.1 deletion encompassing CDH18, CDH12, PMCHL1, PRDM9 and CDH10 in a fetus with congenital heart disease on prenatal ultrasound.Taiwan J Obstet Gynecol. 2018 Oct;57(5):734-738. doi: 10.1016/j.tjog.2018.08.023.
24 CFC1 mutations in Chinese children with congenital heart disease.Int J Cardiol. 2011 Jan 7;146(1):86-8. doi: 10.1016/j.ijcard.2009.07.034. Epub 2009 Oct 23.
25 Expression of the congenital heart disease 5/tryptophan rich basic protein homologue gene during heart development in medaka fish, Oryzias latipes.Dev Growth Differ. 2009 Feb;51(2):95-107. doi: 10.1111/j.1440-169X.2008.01084.x.
26 Generation of human iPSC line from a patient with laterality defects and associated congenital heart anomalies carrying a DAND5 missense alteration.Stem Cell Res. 2017 Dec;25:152-156. doi: 10.1016/j.scr.2017.10.019. Epub 2017 Oct 31.
27 Refining chromosomal region critical for Down syndrome-related heart defects with a case of cryptic 21q22.2 duplication.Congenit Anom (Kyoto). 2005 Jun;45(2):62-4. doi: 10.1111/j.1741-4520.2005.00065.x.
28 Association of aminoacyl-tRNA synthetases gene polymorphisms with the risk of congenital heart disease in the Chinese Han population.PLoS One. 2014 Oct 13;9(10):e110072. doi: 10.1371/journal.pone.0110072. eCollection 2014.
29 Lower Circulating Folate Induced by a Fidgetin Intronic Variant Is Associated With Reduced Congenital Heart Disease Susceptibility.Circulation. 2017 May 2;135(18):1733-1748. doi: 10.1161/CIRCULATIONAHA.116.025164. Epub 2017 Mar 16.
30 Galnt1 is required for normal heart valve development and cardiac function.PLoS One. 2015 Jan 23;10(1):e0115861. doi: 10.1371/journal.pone.0115861. eCollection 2015.
31 Association of functional variant in GDF1 promoter with risk of congenital heart disease and its regulation by Nkx2.5.Clin Sci (Lond). 2019 Jun 17;133(12):1281-1295. doi: 10.1042/CS20181024. Print 2019 Jun 28.
32 A novel HAND2 loss-of-function mutation responsible for tetralogy of Fallot.Int J Mol Med. 2016 Feb;37(2):445-51. doi: 10.3892/ijmm.2015.2436. Epub 2015 Dec 15.
33 A novel haemoglobin variant mimicking cyanotic congenital heart disease.BMJ Case Rep. 2016 Jan 28;2016:bcr2015213615. doi: 10.1136/bcr-2015-213615.
34 HIC2 is a novel dosage-dependent regulator of cardiac development located within the distal 22q11 deletion syndrome region.Circ Res. 2014 Jun 20;115(1):23-31. doi: 10.1161/CIRCRESAHA.115.303300. Epub 2014 Apr 18.
35 HIRA directly targets the enhancers of selected cardiac transcription factors during in vitro differentiation of mouse embryonic stem cells.Mol Biol Rep. 2018 Oct;45(5):1001-1011. doi: 10.1007/s11033-018-4247-z. Epub 2018 Jul 20.
36 A de novo 2q35-q36.1 deletion incorporating IHH in a Chinese boy (47,XYY) with syndactyly, type III Waardenburg syndrome, and congenital heart disease.Genet Mol Res. 2016 Dec 2;15(4). doi: 10.4238/gmr15049060.
37 Quality and Safety in Health Care, Part XLI: The IMPACT Registry.Clin Nucl Med. 2018 Nov;43(11):815-817. doi: 10.1097/RLU.0000000000002107.
38 Endothelial deletion of Ino80 disrupts coronary angiogenesis and causes congenital heart disease.Nat Commun. 2018 Jan 25;9(1):368. doi: 10.1038/s41467-017-02796-3.
39 Downregulation of microRNA-592 protects mice from hypoplastic heart and congenital heart disease by inhibition of the Notch signaling pathway through upregulating KCTD10.J Cell Physiol. 2019 May;234(5):6033-6041. doi: 10.1002/jcp.27190. Epub 2018 Nov 27.
40 cMyBP-C was decreased via KLHL3-mediated proteasomal degradation in congenital heart diseases.Exp Cell Res. 2017 Jun 1;355(1):18-25. doi: 10.1016/j.yexcr.2017.03.025. Epub 2017 Mar 16.
41 Palliative Care Opportunities Among Adults With Congenital Heart Disease-A Systematic Review.J Pain Symptom Manage. 2019 Nov;58(5):891-898. doi: 10.1016/j.jpainsymman.2019.07.025. Epub 2019 Aug 9.
42 Mutational analysis of the human MESP1 gene in patients with congenital heart disease reveals a highly variable sequence in exon 1.Eur J Med Genet. 2013 Nov;56(11):591-8. doi: 10.1016/j.ejmg.2013.09.001. Epub 2013 Sep 19.
43 Nuclear/cytoplasmic transport defects in BBS6 underlie congenital heart disease through perturbation of a chromatin remodeling protein.PLoS Genet. 2017 Jul 28;13(7):e1006936. doi: 10.1371/journal.pgen.1006936. eCollection 2017 Jul.
44 Characterization of Transcriptional Repressor Gene MSX1 Variations for Possible Associations with Congenital Heart Diseases.PLoS One. 2015 Nov 10;10(11):e0142666. doi: 10.1371/journal.pone.0142666. eCollection 2015.
45 The Polycomb-group gene Rae28 sustains Nkx2.5/Csx expression and is essential for cardiac morphogenesis.J Clin Invest. 2002 Jul;110(2):177-84. doi: 10.1172/JCI14839.
46 De novo missense variants in PPP1CB are associated with intellectual disability and congenital heart disease.Hum Genet. 2016 Dec;135(12):1399-1409. doi: 10.1007/s00439-016-1731-1. Epub 2016 Sep 28.
47 Double de novo mutations in dilated cardiomyopathy with cardiac arrest.J Electrocardiol. 2019 Mar-Apr;53:40-43. doi: 10.1016/j.jelectrocard.2018.12.015. Epub 2018 Dec 21.
48 Rbm24, a target of p53, is necessary for proper expression of p53 and heart development.Cell Death Differ. 2018 Jun;25(6):1118-1130. doi: 10.1038/s41418-017-0029-8. Epub 2018 Jan 22.
49 Association between RNF41 gene c.-206 T > A genetic polymorphism and risk of congenital heart diseases in the Chinese Mongolian population.Genet Mol Res. 2016 Jun 17;15(2). doi: 10.4238/gmr.15028089.
50 Duplication of 10q22.3-q23.3 encompassing BMPR1A and NGR3 associated with congenital heart disease, microcephaly, and mild intellectual disability.Am J Med Genet A. 2015 Dec;167A(12):3174-9. doi: 10.1002/ajmg.a.37347. Epub 2015 Sep 3.
51 Decreased surfactant proteins in lambs with pulmonary hypertension secondary to increased blood flow.Am J Physiol Lung Cell Mol Physiol. 2001 Nov;281(5):L1264-70. doi: 10.1152/ajplung.2001.281.5.L1264.
52 High-resolution physical map and identification of potentially regulatory sequences of the human SH3BGR located in the Down syndrome chromosomal region.Biochem Biophys Res Commun. 1997 Dec 18;241(2):321-6. doi: 10.1006/bbrc.1997.7816.
53 Characterization of soluble N-ethylmaleimide-sensitive factor attachment protein receptor gene STX18 variations for possible roles in congenital heart diseases.Gene. 2017 Jan 20;598:79-83. doi: 10.1016/j.gene.2016.10.043. Epub 2016 Nov 2.
54 TAMM41 is required for heart valve differentiation via regulation of PINK-PARK2 dependent mitophagy.Cell Death Differ. 2019 Nov;26(11):2430-2446. doi: 10.1038/s41418-019-0311-z. Epub 2019 Mar 1.
55 Mutations in the EGF-CFC gene cryptic are an infrequent cause of congenital heart disease.Pediatr Cardiol. 2006 Nov-Dec;27(6):695-8. doi: 10.1007/s00246-006-1082-0. Epub 2006 Oct 27.
56 A regulatory variant in TBX2 promoter is related to the decreased susceptibility of congenital heart disease in the Han Chinese population.Mol Genet Genomic Med. 2019 Feb;7(2):e00530. doi: 10.1002/mgg3.530. Epub 2018 Dec 7.
57 Characteristics and outcomes of children with ductal-dependent congenital heart disease and esophageal atresia/tracheoesophageal fistula: A multi-institutional analysis.Surgery. 2018 Apr;163(4):847-853. doi: 10.1016/j.surg.2017.09.010. Epub 2018 Jan 8.
58 Analyses of GATA4, NKX2.5, and TFAP2B genes in subjects from southern China with sporadic congenital heart disease.Cardiovasc Pathol. 2013 Mar-Apr;22(2):141-5. doi: 10.1016/j.carpath.2012.07.001. Epub 2012 Sep 6.
59 Modulation of ADAR mRNA expression in patients with congenital heart defects.PLoS One. 2019 Apr 30;14(4):e0200968. doi: 10.1371/journal.pone.0200968. eCollection 2019.
60 A familial congenital heart disease with a possible multigenic origin involving a mutation in BMPR1A.Sci Rep. 2019 Feb 27;9(1):2959. doi: 10.1038/s41598-019-39648-7.
61 Human atrial myosin light chain 1 expression attenuates heart failure.Adv Exp Med Biol. 2005;565:283-92; discussion 92, 405-15. doi: 10.1007/0-387-24990-7_21.
62 Novel Point Mutations of CITED2 Gene Are Associated with Non-familial Congenital Heart Disease (CHD) in Sporadic Pediatric Patients.Appl Biochem Biotechnol. 2020 Mar;190(3):896-906. doi: 10.1007/s12010-019-03125-8. Epub 2019 Sep 13.
63 Localization of the mosaic transmembrane serine protease corin to heart myocytes.Eur J Biochem. 2000 Dec;267(23):6931-7. doi: 10.1046/j.1432-1033.2000.01806.x.
64 DGCR8 expression is altered in children with congenital heart defects.Clin Chim Acta. 2019 Aug;495:25-28. doi: 10.1016/j.cca.2019.03.1619. Epub 2019 Mar 26.
65 DNAH11 variants and its association with congenital heart disease and heterotaxy syndrome.Sci Rep. 2019 Apr 30;9(1):6683. doi: 10.1038/s41598-019-43109-6.
66 Molecular mechanisms of Ellisvan Creveld gene variations in ventricular septal defect.Mol Med Rep. 2018 Jan;17(1):1527-1536. doi: 10.3892/mmr.2017.8088. Epub 2017 Nov 15.
67 GATA5 loss-of-function mutations associated with congenital bicuspid aortic valve. Int J Mol Med. 2014 May;33(5):1219-26. doi: 10.3892/ijmm.2014.1700. Epub 2014 Mar 14.
68 Targeted sequencing identifies novel GATA6 variants in a large cohort of patients with conotruncal heart defects.Gene. 2018 Jan 30;641:341-348. doi: 10.1016/j.gene.2017.10.083. Epub 2017 Oct 31.
69 HOXA1 gene is not potentially related to ventricular septal defect in Chinese children.Pediatr Cardiol. 2013 Feb;34(2):226-30. doi: 10.1007/s00246-012-0418-1. Epub 2012 Jul 10.
70 Pediatric End-Stage Failing Hearts Demonstrate Increased Cardiac Stem Cells.Ann Thorac Surg. 2015 Aug;100(2):615-22. doi: 10.1016/j.athoracsur.2015.04.088. Epub 2015 Jun 30.
71 Microduplication of 7q36.3 encompassing the SHH longrange regulator (ZRS) in a patient with triphalangeal thumbpolysyndactyly syndrome and congenital heart disease.Mol Med Rep. 2017 Feb;15(2):793-797. doi: 10.3892/mmr.2016.6092. Epub 2016 Dec 29.
72 Loss-of-function variants in myocardin cause congenital megabladder in humans and mice. J Clin Invest. 2019 Dec 2;129(12):5374-5380. doi: 10.1172/JCI128545.
73 High mutation rate of NPHP3 in 18 Chinese infantile nephronophthisis patients. Nephrology (Carlton). 2016 Mar;21(3):209-16. doi: 10.1111/nep.12563.
74 Analysis of gene copy number variations in patients with congenital heart disease using multiplex ligation-dependent probe amplification.Anatol J Cardiol. 2018 Jul;20(1):9-15. doi: 10.14744/AnatolJCardiol.2018.70481.
75 Novel recessive cone-rod dystrophy caused by POC1B mutation.JAMA Ophthalmol. 2014 Oct;132(10):1185-91. doi: 10.1001/jamaophthalmol.2014.1658.
76 Catabolism of branched-chain amino acids in heart failure: insights from genetic models.Pediatr Cardiol. 2011 Mar;32(3):305-10. doi: 10.1007/s00246-010-9856-9. Epub 2011 Jan 7.
77 RCAN1 Mutation and Functional Characterization in Children with Sporadic Congenital Heart Disease.Pediatr Cardiol. 2018 Feb;39(2):226-235. doi: 10.1007/s00246-017-1746-y. Epub 2017 Oct 9.
78 Dysregulation of TBX1 dosage in the anterior heart field results in congenital heart disease resembling the 22q11.2 duplication syndrome.Hum Mol Genet. 2018 Jun 1;27(11):1847-1857. doi: 10.1093/hmg/ddy078.
79 TBX20 Regulates Angiogenesis Through the Prokineticin 2-Prokineticin Receptor 1 Pathway.Circulation. 2018 Aug 28;138(9):913-928. doi: 10.1161/CIRCULATIONAHA.118.033939.
80 Expression of the guanine nucleotide exchange factor, RAPGEF5, during mouse and human embryogenesis.Gene Expr Patterns. 2019 Dec;34:119057. doi: 10.1016/j.gep.2019.119057. Epub 2019 Jun 1.