General Information of Drug Off-Target (DOT) (ID: OT4DJHCM)

DOT Name Protein FAM171B (FAM171B)
Gene Name FAM171B
Related Disease
Colorectal carcinoma ( )
Crohn disease ( )
Inflammatory bowel disease ( )
UniProt ID
F171B_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF20771 ; PF10577
Sequence
MARLCRRVPCTLLLGLAVVLLKARLVPAAARAELSRSDLSLIQQQQQQQQQQQQQQKQLE
EAEEERTEVPGATSTLTVPVSVFMLKVQVNDIISRQYLSQAVVEVFVNYTKTNSTVTKSN
GAVLIKVPYKLGLSLTIIAYKDGYVLTPLPWKTRRMPIYSSVTLSLFPQSQANIWLFEDT
VLITGKLADAKSQPSVQFSKALIKLPDNHHISNVTGYLTVLQQFLKVDNFLHTTGITLNK
PGFENIELTPLAAICVKIYSGGKELKVNGSIQVSLPLLRLNDISAGDRIPAWTFDMNTGA
WVNHGRGMVKEHNNHLIWTYDAPHLGYWIAAPLPGTRGSGINEDSKDITAYHTVFLTAIL
GGTIVIVIGFFAVLLCYCRDKCGTPQKRERNITKLEVLKRDQTTSTTHINHISTVKVALK
AEDKSQLFNAKNSSYSPQKKEPSKAETEERVSMVKTRDDFKIYNEDVSFLSVNQNNYSRN
PTQSLEPNVGSKQPKHINNNLSSSLGDAQDEKRYLTGNEEAYGRSHIPEQLMHIYSQPIA
ILQTSDLFSTPEQLHTAKSATLPRKGQLVYGQLMEPVNRENFTQTLPKMPIHSHAQPPDA
REEDIILEGQQSLPSQASDWSRYSSSLLESVSVPGTLNEAVVMTPFSSELQGISEQTLLE
LSKGKPSPHPRAWFVSLDGKPVAQVRHSFIDLKKGKRTQSNDTSLDSGVDMNELHSSRKL
EREKTFIKSMHQPKILYLEDLDLSSSESGTTVCSPEDPALRHILDGGSGVIMEHPGEESP
GRKSTVEDFEANTSPTKRRGRPPLAKRDSKTNIWKKREERPLIPIN

Molecular Interaction Atlas (MIA) of This DOT

3 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Colorectal carcinoma DIS5PYL0 Strong Altered Expression [1]
Crohn disease DIS2C5Q8 Limited Genetic Variation [2]
Inflammatory bowel disease DISGN23E Limited Genetic Variation [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
13 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Protein FAM171B (FAM171B). [3]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Protein FAM171B (FAM171B). [4]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Protein FAM171B (FAM171B). [5]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Protein FAM171B (FAM171B). [6]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of Protein FAM171B (FAM171B). [8]
Liothyronine DM6IR3P Approved Liothyronine decreases the expression of Protein FAM171B (FAM171B). [9]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Protein FAM171B (FAM171B). [10]
OTX-015 DMI8RG1 Phase 1/2 OTX-015 increases the expression of Protein FAM171B (FAM171B). [11]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 increases the expression of Protein FAM171B (FAM171B). [13]
Mivebresib DMCPF90 Phase 1 Mivebresib increases the expression of Protein FAM171B (FAM171B). [11]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Protein FAM171B (FAM171B). [14]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Protein FAM171B (FAM171B). [15]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Protein FAM171B (FAM171B). [16]
------------------------------------------------------------------------------------
⏷ Show the Full List of 13 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Protein FAM171B (FAM171B). [7]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Protein FAM171B (FAM171B). [12]
------------------------------------------------------------------------------------

References

1 MiR-483-3p regulates oxaliplatin resistance by targeting FAM171B in human colorectal cancer cells.Artif Cells Nanomed Biotechnol. 2019 Dec;47(1):725-736. doi: 10.1080/21691401.2019.1569530.
2 Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease.Nat Genet. 2017 Feb;49(2):256-261. doi: 10.1038/ng.3760. Epub 2017 Jan 9.
3 The neuroprotective action of the mood stabilizing drugs lithium chloride and sodium valproate is mediated through the up-regulation of the homeodomain protein Six1. Toxicol Appl Pharmacol. 2009 Feb 15;235(1):124-34.
4 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
5 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
6 17-Estradiol Activates HSF1 via MAPK Signaling in ER-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533. doi: 10.3390/cancers11101533.
7 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
8 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
9 Monitoring of deiodinase deficiency based on transcriptomic responses in SH-SY5Y cells. Arch Toxicol. 2013 Jun;87(6):1103-13. doi: 10.1007/s00204-013-1018-4. Epub 2013 Feb 10.
10 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
11 Comprehensive transcriptome profiling of BET inhibitor-treated HepG2 cells. PLoS One. 2022 Apr 29;17(4):e0266966. doi: 10.1371/journal.pone.0266966. eCollection 2022.
12 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
13 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
14 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
15 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
16 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.