General Information of Drug Off-Target (DOT) (ID: OT4HUP9B)

DOT Name Transcription factor Sp5 (SP5)
Gene Name SP5
Related Disease
Prostate cancer ( )
Prostate neoplasm ( )
UniProt ID
SP5_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00096
Sequence
MAAVAVLRNDSLQAFLQDRTPSASPDLGKHSPLALLAATCSRIGQPGAAAPPDFLQVPYD
PALGSPSRLFHPWTADMPAHSPGALPPPHPSLGLTPQKTHLQPSFGAAHELPLTPPADPS
YPYEFSPVKMLPSSMAALPASCAPAYVPYAAQAALPPGYSNLLPPPPPPPPPPTCRQLSP
NPAPDDLPWWSIPQAGAGPGASGVPGSGLSGACAGAPHAPRFPASAAAAAAAAAALQRGL
VLGPSDFAQYQSQIAALLQTKAPLAATARRCRRCRCPNCQAAGGAPEAEPGKKKQHVCHV
PGCGKVYGKTSHLKAHLRWHTGERPFVCNWLFCGKSFTRSDELQRHLRTHTGEKRFACPE
CGKRFMRSDHLAKHVKTHQNKKLKVAEAGVKREDARDL
Function Binds to GC boxes promoters elements. Probable transcriptional activator that has a role in the coordination of changes in transcription required to generate pattern in the developing embryo.

Molecular Interaction Atlas (MIA) of This DOT

2 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Prostate cancer DISF190Y Strong Biomarker [1]
Prostate neoplasm DISHDKGQ Strong Biomarker [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
17 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Transcription factor Sp5 (SP5). [2]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Transcription factor Sp5 (SP5). [3]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Transcription factor Sp5 (SP5). [4]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Transcription factor Sp5 (SP5). [5]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Transcription factor Sp5 (SP5). [6]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Transcription factor Sp5 (SP5). [7]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Transcription factor Sp5 (SP5). [8]
Menadione DMSJDTY Approved Menadione affects the expression of Transcription factor Sp5 (SP5). [9]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Transcription factor Sp5 (SP5). [7]
Azathioprine DMMZSXQ Approved Azathioprine decreases the expression of Transcription factor Sp5 (SP5). [10]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Transcription factor Sp5 (SP5). [11]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Transcription factor Sp5 (SP5). [7]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Transcription factor Sp5 (SP5). [13]
Bisphenol A DM2ZLD7 Investigative Bisphenol A affects the expression of Transcription factor Sp5 (SP5). [15]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Transcription factor Sp5 (SP5). [16]
Acetaldehyde DMJFKG4 Investigative Acetaldehyde increases the expression of Transcription factor Sp5 (SP5). [17]
Bilirubin DMI0V4O Investigative Bilirubin decreases the expression of Transcription factor Sp5 (SP5). [18]
------------------------------------------------------------------------------------
⏷ Show the Full List of 17 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Transcription factor Sp5 (SP5). [12]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Transcription factor Sp5 (SP5). [14]
------------------------------------------------------------------------------------

References

1 Identification of genes potentially involved in the acquisition of androgen-independent and metastatic tumor growth in an autochthonous genetically engineered mouse prostate cancer model.Prostate. 2007 Jan 1;67(1):83-106. doi: 10.1002/pros.20505.
2 Design principles of concentration-dependent transcriptome deviations in drug-exposed differentiating stem cells. Chem Res Toxicol. 2014 Mar 17;27(3):408-20.
3 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
4 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
5 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
6 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
7 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
8 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
9 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
10 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
11 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
12 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
13 Loss of TRIM33 causes resistance to BET bromodomain inhibitors through MYC- and TGF-beta-dependent mechanisms. Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):E4558-66.
14 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
15 Comprehensive analysis of transcriptomic changes induced by low and high doses of bisphenol A in HepG2 spheroids in vitro and rat liver in vivo. Environ Res. 2019 Jun;173:124-134. doi: 10.1016/j.envres.2019.03.035. Epub 2019 Mar 18.
16 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
17 Transcriptome profile analysis of saturated aliphatic aldehydes reveals carbon number-specific molecules involved in pulmonary toxicity. Chem Res Toxicol. 2014 Aug 18;27(8):1362-70.
18 Global changes in gene regulation demonstrate that unconjugated bilirubin is able to upregulate and activate select components of the endoplasmic reticulum stress response pathway. J Biochem Mol Toxicol. 2010 Mar-Apr;24(2):73-88.