General Information of Drug Off-Target (DOT) (ID: OT4JATFE)

DOT Name Activin receptor type-1 (ACVR1)
Synonyms EC 2.7.11.30; Activin receptor type I; ACTR-I; Activin receptor-like kinase 2; ALK-2; Serine/threonine-protein kinase receptor R1; SKR1; TGF-B superfamily receptor type I; TSR-I
Gene Name ACVR1
Related Disease
Fibrodysplasia ossificans progressiva ( )
Congenital heart disease ( )
UniProt ID
ACVR1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
3H9R ; 3MTF ; 3OOM ; 3Q4U ; 4BGG ; 4C02 ; 4DYM ; 5OXG ; 5OY6 ; 5S75 ; 5S76 ; 5S77 ; 5S78 ; 5S79 ; 5S7A ; 5S7B ; 5S7C ; 5S7D ; 5S7E ; 5S7F ; 5S7G ; 5S7H ; 5S7I ; 5S7J ; 5S7K ; 5S7L ; 5S7M ; 5S7N ; 5S7O ; 5S7P ; 5S7Q ; 5S7R ; 5S7S ; 5S7T ; 5S7U ; 5S7V ; 5S7W ; 5S7X ; 5S7Y ; 5S7Z ; 5S80 ; 5S81 ; 5S82 ; 5S83 ; 5S84 ; 5S85 ; 5S86 ; 5S87 ; 5S88 ; 5S89 ; 5S8A ; 5S8B ; 5S9K ; 6ACR ; 6EIX ; 6GI6 ; 6GIN ; 6GIP ; 6I1S ; 6JUX ; 6SRH ; 6SZM ; 6T6D ; 6T8N ; 6TN8 ; 6UNQ ; 6UNR ; 6UNS ; 6Z36 ; 6ZGC ; 7A21 ; 7C3G ; 7NNS ; 7YRU ; 8C7W ; 8C7Z
EC Number
2.7.11.30
Pfam ID
PF01064 ; PF07714 ; PF08515
Sequence
MVDGVMILPVLIMIALPSPSMEDEKPKVNPKLYMCVCEGLSCGNEDHCEGQQCFSSLSIN
DGFHVYQKGCFQVYEQGKMTCKTPPSPGQAVECCQGDWCNRNITAQLPTKGKSFPGTQNF
HLEVGLIILSVVFAVCLLACLLGVALRKFKRRNQERLNPRDVEYGTIEGLITTNVGDSTL
ADLLDHSCTSGSGSGLPFLVQRTVARQITLLECVGKGRYGEVWRGSWQGENVAVKIFSSR
DEKSWFRETELYNTVMLRHENILGFIASDMTSRHSSTQLWLITHYHEMGSLYDYLQLTTL
DTVSCLRIVLSIASGLAHLHIEIFGTQGKPAIAHRDLKSKNILVKKNGQCCIADLGLAVM
HSQSTNQLDVGNNPRVGTKRYMAPEVLDETIQVDCFDSYKRVDIWAFGLVLWEVARRMVS
NGIVEDYKPPFYDVVPNDPSFEDMRKVVCVDQQRPNIPNRWFSDPTLTSLAKLMKECWYQ
NPSARLTALRIKKTLTKIDNSLDKLKTDC
Function
Bone morphogenetic protein (BMP) type I receptor that is involved in a wide variety of biological processes, including bone, heart, cartilage, nervous, and reproductive system development and regulation. As a type I receptor, forms heterotetrameric receptor complexes with the type II receptors AMHR2, ACVR2A or ACVR2B. Upon binding of ligands such as BMP7 or GDF2/BMP9 to the heteromeric complexes, type II receptors transphosphorylate ACVR1 intracellular domain. In turn, ACVR1 kinase domain is activated and subsequently phosphorylates SMAD1/5/8 proteins that transduce the signal. In addition to its role in mediating BMP pathway-specific signaling, suppresses TGFbeta/activin pathway signaling by interfering with the binding of activin to its type II receptor. Besides canonical SMAD signaling, can activate non-canonical pathways such as p38 mitogen-activated protein kinases/MAPKs. May promote the expression of HAMP, potentially via its interaction with BMP6.
Tissue Specificity Expressed in normal parenchymal cells, endothelial cells, fibroblasts and tumor-derived epithelial cells.
KEGG Pathway
Cytokine-cytokine receptor interaction (hsa04060 )
TGF-beta sig.ling pathway (hsa04350 )
Sig.ling pathways regulating pluripotency of stem cells (hsa04550 )
Fluid shear stress and atherosclerosis (hsa05418 )

Molecular Interaction Atlas (MIA) of This DOT

2 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Fibrodysplasia ossificans progressiva DISAT6WU Definitive Autosomal dominant [1]
Congenital heart disease DISQBA23 Limited Autosomal dominant [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
19 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Activin receptor type-1 (ACVR1). [2]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Activin receptor type-1 (ACVR1). [3]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Activin receptor type-1 (ACVR1). [4]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Activin receptor type-1 (ACVR1). [5]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Activin receptor type-1 (ACVR1). [6]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Activin receptor type-1 (ACVR1). [7]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of Activin receptor type-1 (ACVR1). [8]
Progesterone DMUY35B Approved Progesterone decreases the expression of Activin receptor type-1 (ACVR1). [9]
Ethanol DMDRQZU Approved Ethanol increases the expression of Activin receptor type-1 (ACVR1). [10]
Diclofenac DMPIHLS Approved Diclofenac affects the expression of Activin receptor type-1 (ACVR1). [7]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Activin receptor type-1 (ACVR1). [11]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Activin receptor type-1 (ACVR1). [12]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Activin receptor type-1 (ACVR1). [13]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN increases the expression of Activin receptor type-1 (ACVR1). [14]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Activin receptor type-1 (ACVR1). [15]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Activin receptor type-1 (ACVR1). [16]
Coumestrol DM40TBU Investigative Coumestrol decreases the expression of Activin receptor type-1 (ACVR1). [17]
Glyphosate DM0AFY7 Investigative Glyphosate increases the expression of Activin receptor type-1 (ACVR1). [18]
geraniol DMS3CBD Investigative geraniol increases the expression of Activin receptor type-1 (ACVR1). [19]
------------------------------------------------------------------------------------
⏷ Show the Full List of 19 Drug(s)

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
3 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
4 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
5 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
6 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
7 Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNF-mediated hepatotoxicity. Toxicol Sci. 2014 Jul;140(1):144-59. doi: 10.1093/toxsci/kfu072. Epub 2014 Apr 20.
8 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
9 Effects of progesterone treatment on expression of genes involved in uterine quiescence. Reprod Sci. 2011 Aug;18(8):781-97.
10 Gene expression signatures after ethanol exposure in differentiating embryoid bodies. Toxicol In Vitro. 2018 Feb;46:66-76.
11 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
12 New insights into BaP-induced toxicity: role of major metabolites in transcriptomics and contribution to hepatocarcinogenesis. Arch Toxicol. 2016 Jun;90(6):1449-58.
13 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
14 Chemical stresses fail to mimic the unfolded protein response resulting from luminal load with unfolded polypeptides. J Biol Chem. 2018 Apr 13;293(15):5600-5612.
15 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
16 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
17 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
18 Glyphosate-based herbicides at low doses affect canonical pathways in estrogen positive and negative breast cancer cell lines. PLoS One. 2019 Jul 11;14(7):e0219610. doi: 10.1371/journal.pone.0219610. eCollection 2019.
19 Geraniol suppresses prostate cancer growth through down-regulation of E2F8. Cancer Med. 2016 Oct;5(10):2899-2908.