General Information of Drug Off-Target (DOT) (ID: OT52UFVS)

DOT Name Roundabout homolog 1 (ROBO1)
Synonyms Deleted in U twenty twenty; H-Robo-1
Gene Name ROBO1
Related Disease
Neurooculorenal syndrome ( )
Pituitary hormone deficiency, combined or isolated, 8 ( )
Pituitary stalk interruption syndrome ( )
UniProt ID
ROBO1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2EO9; 2V9Q; 2V9R; 2V9T; 3WIH; 4HLJ; 5O5G; 5O5I; 5OPE; 6A77; 6A78; 6A79
Pfam ID
PF00041 ; PF07679 ; PF13927
Sequence
MKWKHVPFLVMISLLSLSPNHLFLAQLIPDPEDVERGNDHGTPIPTSDNDDNSLGYTGSR
LRQEDFPPRIVEHPSDLIVSKGEPATLNCKAEGRPTPTIEWYKGGERVETDKDDPRSHRM
LLPSGSLFFLRIVHGRKSRPDEGVYVCVARNYLGEAVSHNASLEVAILRDDFRQNPSDVM
VAVGEPAVMECQPPRGHPEPTISWKKDGSPLDDKDERITIRGGKLMITYTRKSDAGKYVC
VGTNMVGERESEVAELTVLERPSFVKRPSNLAVTVDDSAEFKCEARGDPVPTVRWRKDDG
ELPKSRYEIRDDHTLKIRKVTAGDMGSYTCVAENMVGKAEASATLTVQEPPHFVVKPRDQ
VVALGRTVTFQCEATGNPQPAIFWRREGSQNLLFSYQPPQSSSRFSVSQTGDLTITNVQR
SDVGYYICQTLNVAGSIITKAYLEVTDVIADRPPPVIRQGPVNQTVAVDGTFVLSCVATG
SPVPTILWRKDGVLVSTQDSRIKQLENGVLQIRYAKLGDTGRYTCIASTPSGEATWSAYI
EVQEFGVPVQPPRPTDPNLIPSAPSKPEVTDVSRNTVTLSWQPNLNSGATPTSYIIEAFS
HASGSSWQTVAENVKTETSAIKGLKPNAIYLFLVRAANAYGISDPSQISDPVKTQDVLPT
SQGVDHKQVQRELGNAVLHLHNPTVLSSSSIEVHWTVDQQSQYIQGYKILYRPSGANHGE
SDWLVFEVRTPAKNSVVIPDLRKGVNYEIKARPFFNEFQGADSEIKFAKTLEEAPSAPPQ
GVTVSKNDGNGTAILVSWQPPPEDTQNGMVQEYKVWCLGNETRYHINKTVDGSTFSVVIP
FLVPGIRYSVEVAASTGAGSGVKSEPQFIQLDAHGNPVSPEDQVSLAQQISDVVKQPAFI
AGIGAACWIILMVFSIWLYRHRKKRNGLTSTYAGIRKVPSFTFTPTVTYQRGGEAVSSGG
RPGLLNISEPAAQPWLADTWPNTGNNHNDCSISCCTAGNGNSDSNLTTYSRPADCIANYN
NQLDNKQTNLMLPESTVYGDVDLSNKINEMKTFNSPNLKDGRFVNPSGQPTPYATTQLIQ
SNLSNNMNNGSGDSGEKHWKPLGQQKQEVAPVQYNIVEQNKLNKDYRANDTVPPTIPYNQ
SYDQNTGGSYNSSDRGSSTSGSQGHKKGARTPKVPKQGGMNWADLLPPPPAHPPPHSNSE
EYNISVDESYDQEMPCPVPPARMYLQQDELEEEEDERGPTPPVRGAASSPAAVSYSHQST
ATLTPSPQEELQPMLQDCPEETGHMQHQPDRRRQPVSPPPPPRPISPPHTYGYISGPLVS
DMDTDAPEEEEDEADMEVAKMQTRRLLLRGLEQTPASSVGDLESSVTGSMINGWGSASEE
DNISSGRSSVSSSDGSFFTDADFAQAVAAAAEYAGLKVARRQMQDAAGRRHFHASQCPRP
TSPVSTDSNMSAAVMQKTRPAKKLKHQPGHLRRETYTDDLPPPPVPPPAIKSPTAQSKTQ
LEVRPVVVPKLPSMDARTDRSSDRKGSSYKGREVLDGRQVVDMRTNPGDPREAQEQQNDG
KGRGNKAAKRDLPPAKTHLIQEDILPYCRPTFPTSNNPRDPSSSSSMSSRGSGSRQREQA
NVGRRNIAEMQVLGGYERGEDNNEELEETES
Function
Receptor for SLIT1 and SLIT2 that mediates cellular responses to molecular guidance cues in cellular migration, including axonal navigation at the ventral midline of the neural tube and projection of axons to different regions during neuronal development. Interaction with the intracellular domain of FLRT3 mediates axon attraction towards cells expressing NTN1. In axon growth cones, the silencing of the attractive effect of NTN1 by SLIT2 may require the formation of a ROBO1-DCC complex. Plays a role in the regulation of cell migration via its interaction with MYO9B; inhibits MYO9B-mediated stimulation of RHOA GTPase activity, and thereby leads to increased levels of active, GTP-bound RHOA. May be required for lung development.
Tissue Specificity Widely expressed, with exception of kidney.
KEGG Pathway
Axon guidance (hsa04360 )
Reactome Pathway
Signaling by ROBO receptors (R-HSA-376176 )
Activation of RAC1 (R-HSA-428540 )
Regulation of commissural axon pathfinding by SLIT and ROBO (R-HSA-428542 )
Inactivation of CDC42 and RAC1 (R-HSA-428543 )
Role of ABL in ROBO-SLIT signaling (R-HSA-428890 )
SLIT2 (R-HSA-8985586 )
Regulation of cortical dendrite branching (R-HSA-8985801 )
Regulation of expression of SLITs and ROBOs (R-HSA-9010553 )
Netrin-1 signaling (R-HSA-373752 )

Molecular Interaction Atlas (MIA) of This DOT

3 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Neurooculorenal syndrome DISAGT5T Definitive Autosomal recessive [1]
Pituitary hormone deficiency, combined or isolated, 8 DIS7D9VT Strong Autosomal dominant [2]
Pituitary stalk interruption syndrome DISGSN5T Supportive Autosomal dominant [3]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Etoposide DMNH3PG Approved Roundabout homolog 1 (ROBO1) affects the response to substance of Etoposide. [25]
------------------------------------------------------------------------------------
17 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate affects the expression of Roundabout homolog 1 (ROBO1). [4]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Roundabout homolog 1 (ROBO1). [5]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Roundabout homolog 1 (ROBO1). [6]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Roundabout homolog 1 (ROBO1). [7]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Roundabout homolog 1 (ROBO1). [8]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Roundabout homolog 1 (ROBO1). [10]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Roundabout homolog 1 (ROBO1). [11]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Roundabout homolog 1 (ROBO1). [12]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol increases the expression of Roundabout homolog 1 (ROBO1). [14]
Permethrin DMZ0Q1G Approved Permethrin decreases the expression of Roundabout homolog 1 (ROBO1). [15]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of Roundabout homolog 1 (ROBO1). [16]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Roundabout homolog 1 (ROBO1). [17]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 increases the expression of Roundabout homolog 1 (ROBO1). [18]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Roundabout homolog 1 (ROBO1). [19]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Roundabout homolog 1 (ROBO1). [20]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Roundabout homolog 1 (ROBO1). [23]
Nickel chloride DMI12Y8 Investigative Nickel chloride increases the expression of Roundabout homolog 1 (ROBO1). [24]
------------------------------------------------------------------------------------
⏷ Show the Full List of 17 Drug(s)
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Roundabout homolog 1 (ROBO1). [9]
Decitabine DMQL8XJ Approved Decitabine affects the methylation of Roundabout homolog 1 (ROBO1). [13]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Roundabout homolog 1 (ROBO1). [21]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the methylation of Roundabout homolog 1 (ROBO1). [22]
------------------------------------------------------------------------------------

References

1 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
2 Robo1 regulates the development of major axon tracts and interneuron migration in the forebrain. Development. 2006 Jun;133(11):2243-52. doi: 10.1242/dev.02379.
3 Mutations in the Human ROBO1 Gene in Pituitary Stalk Interruption Syndrome. J Clin Endocrinol Metab. 2017 Jul 1;102(7):2401-2406. doi: 10.1210/jc.2016-1095.
4 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
5 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
6 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
7 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
8 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
9 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
10 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
11 Changes in gene expression profiles of multiple myeloma cells induced by arsenic trioxide (ATO): possible mechanisms to explain ATO resistance in vivo. Br J Haematol. 2005 Mar;128(5):636-44.
12 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
13 Frequent inactivation of RAMP2, EFEMP1 and Dutt1 in lung cancer by promoter hypermethylation. Clin Cancer Res. 2007 Aug 1;13(15 Pt 1):4336-44. doi: 10.1158/1078-0432.CCR-07-0015.
14 Identification of biomarkers and outcomes of endocrine disruption in human ovarian cortex using In Vitro Models. Toxicology. 2023 Feb;485:153425. doi: 10.1016/j.tox.2023.153425. Epub 2023 Jan 5.
15 Exposure to Insecticides Modifies Gene Expression and DNA Methylation in Hematopoietic Tissues In Vitro. Int J Mol Sci. 2023 Mar 26;24(7):6259. doi: 10.3390/ijms24076259.
16 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
17 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
18 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
19 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
20 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
21 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
22 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
23 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
24 The contact allergen nickel triggers a unique inflammatory and proangiogenic gene expression pattern via activation of NF-kappaB and hypoxia-inducible factor-1alpha. J Immunol. 2007 Mar 1;178(5):3198-207.
25 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.