General Information of Drug Off-Target (DOT) (ID: OT80FYA3)

DOT Name G-protein coupled receptor 161 (GPR161)
Synonyms G-protein coupled receptor RE2
Gene Name GPR161
Related Disease
Neural tube defect ( )
Breast cancer ( )
Breast carcinoma ( )
Breast neoplasm ( )
Hepatitis C virus infection ( )
Medulloblastoma ( )
Neoplasm ( )
Triple negative breast cancer ( )
Acute myelogenous leukaemia ( )
Pituitary stalk interruption syndrome ( )
UniProt ID
GP161_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
8KH4
Pfam ID
PF00001
Sequence
MSLNSSLSCRKELSNLTEEEGGEGGVIITQFIAIIVITIFVCLGNLVIVVTLYKKSYLLT
LSNKFVFSLTLSNFLLSVLVLPFVVTSSIRREWIFGVVWCNFSALLYLLISSASMLTLGV
IAIDRYYAVLYPMVYPMKITGNRAVMALVYIWLHSLIGCLPPLFGWSSVEFDEFKWMCVA
AWHREPGYTAFWQIWCALFPFLVMLVCYGFIFRVARVKARKVHCGTVVIVEEDAQRTGRK
NSSTSTSSSGSRRNAFQGVVYSANQCKALITILVVLGAFMVTWGPYMVVIASEALWGKSS
VSPSLETWATWLSFASAVCHPLIYGLWNKTVRKELLGMCFGDRYYREPFVQRQRTSRLFS
ISNRITDLGLSPHLTALMAGGQPLGHSSSTGDTGFSCSQDSGTDMMLLEDYTSDDNPPSH
CTCPPKRRSSVTFEDEVEQIKEAAKNSILHVKAEVHKSLDSYAASLAKAIEAEAKINLFG
EEALPGVLVTARTVPGGGFGGRRGSRTLVSQRLQLQSIEEGDVLAAEQR
Function
Key negative regulator of Shh signaling, which promotes the processing of GLI3 into GLI3R during neural tube development. Recruited by TULP3 and the IFT-A complex to primary cilia and acts as a regulator of the PKA-dependent basal repression machinery in Shh signaling by increasing cAMP levels, leading to promote the PKA-dependent processing of GLI3 into GLI3R and repress the Shh signaling. In presence of SHH, it is removed from primary cilia and is internalized into recycling endosomes, preventing its activity and allowing activation of the Shh signaling. Its ligand is unknown.
KEGG Pathway
Hedgehog sig.ling pathway (hsa04340 )
Reactome Pathway
Hedgehog 'on' state (R-HSA-5632684 )
Hedgehog 'off' state (R-HSA-5610787 )

Molecular Interaction Atlas (MIA) of This DOT

10 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Neural tube defect DIS5J95E Definitive Genetic Variation [1]
Breast cancer DIS7DPX1 Strong Biomarker [2]
Breast carcinoma DIS2UE88 Strong Genetic Variation [3]
Breast neoplasm DISNGJLM Strong Biomarker [2]
Hepatitis C virus infection DISQ0M8R Strong Biomarker [4]
Medulloblastoma DISZD2ZL Strong Genetic Variation [5]
Neoplasm DISZKGEW Strong Genetic Variation [6]
Triple negative breast cancer DISAMG6N Strong Biomarker [2]
Acute myelogenous leukaemia DISCSPTN moderate Genetic Variation [7]
Pituitary stalk interruption syndrome DISGSN5T Supportive Autosomal dominant [8]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
8 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of G-protein coupled receptor 161 (GPR161). [9]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of G-protein coupled receptor 161 (GPR161). [10]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of G-protein coupled receptor 161 (GPR161). [11]
Estradiol DMUNTE3 Approved Estradiol affects the expression of G-protein coupled receptor 161 (GPR161). [12]
Folic acid DMEMBJC Approved Folic acid decreases the expression of G-protein coupled receptor 161 (GPR161). [13]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of G-protein coupled receptor 161 (GPR161). [14]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of G-protein coupled receptor 161 (GPR161). [16]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of G-protein coupled receptor 161 (GPR161). [18]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of G-protein coupled receptor 161 (GPR161). [15]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of G-protein coupled receptor 161 (GPR161). [17]
------------------------------------------------------------------------------------

References

1 Dominant negative GPR161 rare variants are risk factors of human spina bifida.Hum Mol Genet. 2019 Jan 15;28(2):200-208. doi: 10.1093/hmg/ddy339.
2 G-protein-coupled receptor GPR161 is overexpressed in breast cancer and is a promoter of cell proliferation and invasion.Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):4191-6. doi: 10.1073/pnas.1320239111. Epub 2014 Mar 5.
3 Association analysis identifies 65 new breast cancer risk loci.Nature. 2017 Nov 2;551(7678):92-94. doi: 10.1038/nature24284. Epub 2017 Oct 23.
4 A method for detecting hepatitis C envelope specific memory B cells from multiple genotypes using cocktail E2 tetramers.J Immunol Methods. 2019 Sep;472:65-74. doi: 10.1016/j.jim.2019.06.016. Epub 2019 Jun 19.
5 Germline GPR161 Mutations Predispose to Pediatric Medulloblastoma.J Clin Oncol. 2020 Jan 1;38(1):43-50. doi: 10.1200/JCO.19.00577. Epub 2019 Oct 14.
6 Basal Suppression of the Sonic Hedgehog Pathway by the G-Protein-Coupled Receptor Gpr161 Restricts Medulloblastoma Pathogenesis.Cell Rep. 2018 Jan 30;22(5):1169-1184. doi: 10.1016/j.celrep.2018.01.018.
7 Genome-wide haplotype association study identify the FGFR2 gene as a risk gene for acute myeloid leukemia.Oncotarget. 2017 Jan 31;8(5):7891-7899. doi: 10.18632/oncotarget.13631.
8 Whole-exome sequencing identifies homozygous GPR161 mutation in a family with pituitary stalk interruption syndrome. J Clin Endocrinol Metab. 2015 Jan;100(1):E140-7. doi: 10.1210/jc.2014-1984.
9 Stem cell transcriptome responses and corresponding biomarkers that indicate the transition from adaptive responses to cytotoxicity. Chem Res Toxicol. 2017 Apr 17;30(4):905-922.
10 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
11 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
12 Estradiol and selective estrogen receptor modulators differentially regulate target genes with estrogen receptors alpha and beta. Mol Biol Cell. 2004 Mar;15(3):1262-72. doi: 10.1091/mbc.e03-06-0360. Epub 2003 Dec 29.
13 Folic acid supplementation dysregulates gene expression in lymphoblastoid cells--implications in nutrition. Biochem Biophys Res Commun. 2011 Sep 9;412(4):688-92. doi: 10.1016/j.bbrc.2011.08.027. Epub 2011 Aug 16.
14 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
15 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
16 CCAT1 is an enhancer-templated RNA that predicts BET sensitivity in colorectal cancer. J Clin Invest. 2016 Feb;126(2):639-52.
17 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
18 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.