General Information of Disease (ID: DIS5J95E)

Disease Name Neural tube defect
Synonyms spinal dysraphism; NTD
Definition
A congenital defect characterized by failure of the neural tube to close completely; this results in the presence of openings in the brain or spinal cord. Examples of neural tube defects include encephalocele and spina bifida.
Disease Hierarchy
DISOV08L: Central nervous system malformation
DIS5J95E: Neural tube defect
Disease Identifiers
MONDO ID
MONDO_0018075
MESH ID
D009436
UMLS CUI
C0027794
MedGen ID
18009
HPO ID
HP:0045005
Orphanet ID
3388
SNOMED CT ID
253098009

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 41 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
BMP1 TT0L58T Limited Genetic Variation [1]
FOLR2 TTT54CI Limited Altered Expression [2]
PRCP TTTJZ4M Limited Genetic Variation [1]
VANGL1 TT18WJB Limited Biomarker [3]
CARM1 TTIZQFJ Disputed Biomarker [4]
CD320 TT0KV32 Disputed Genetic Variation [5]
EED TTFNJ4R Disputed Biomarker [6]
ID2 TTW8A5N Disputed Altered Expression [7]
PRKACA TT5U49F Disputed Genetic Variation [8]
SLC19A2 TT2A1DZ Disputed Genetic Variation [9]
TAGLN2 TTP6BIJ Disputed Biomarker [10]
TRPM6 TTV76RD Disputed Biomarker [11]
CCL2 TTNAY0P Strong Biomarker [12]
CSF2 TTNYZG2 Strong Biomarker [13]
CUBN TT9YLCR Strong Biomarker [14]
CYP1A2 TTS1DTU Strong Biomarker [15]
DHFR TTYZVDJ Strong Biomarker [16]
F2RL2 TTVSEBF Strong Altered Expression [17]
FOLH1 TT9G4N0 Strong Biomarker [16]
FOLR1 TTVC37M Strong Altered Expression [2]
GRHL2 TTUGH4C Strong Genetic Variation [18]
LRP6 TTSXOWE Strong Genetic Variation [19]
MARCKS TTHRM39 Strong Altered Expression [20]
PDGFRA TT8FYO9 Strong Altered Expression [21]
PTK7 TTXH2ZN Strong Genetic Variation [22]
SHH TTIENCJ Strong Genetic Variation [23]
UCP2 TTSC2YM Strong Genetic Variation [24]
UGCG TTPHEX3 Strong Genetic Variation [25]
DAPK3 TTERVQN Definitive Biomarker [26]
FGF8 TTIUF3J Definitive Biomarker [14]
GHRL TT1OCL0 Definitive Therapeutic [27]
INS TTZOPHG Definitive Therapeutic [28]
MYH2 TTBIL13 Definitive Biomarker [29]
NPY1R TTRK9JT Definitive Biomarker [27]
PEMT TT735V2 Definitive Genetic Variation [30]
PRSS8 TTT4N0Q Definitive Therapeutic [31]
PYY TTVFJLX Definitive Biomarker [27]
RRM1 TTWP0NS Definitive Biomarker [32]
SLC22A16 TTITAVR Definitive Genetic Variation [33]
SLC40A1 TT6Y1PG Definitive Biomarker [34]
SLC46A1 TTY8Z2E Definitive Genetic Variation [35]
------------------------------------------------------------------------------------
⏷ Show the Full List of 41 DTT(s)
This Disease Is Related to 2 DTP Molecule(s)
Gene Name DTP ID Evidence Level Mode of Inheritance REF
ANXA11 DTGQ2CF Disputed Biomarker [10]
SLC2A2 DTUJPOL Definitive Biomarker [36]
------------------------------------------------------------------------------------
This Disease Is Related to 8 DME Molecule(s)
Gene Name DME ID Evidence Level Mode of Inheritance REF
MTRR DE6NIY9 Limited Altered Expression [2]
PGPEP1 DEVDR46 Limited Genetic Variation [1]
GLDC DEIN8FB Disputed Genetic Variation [37]
ALDH1A2 DEKN1H4 Strong Biomarker [38]
GCLC DESYL1F Strong Genetic Variation [25]
NAT2 DER7TA0 Strong Biomarker [15]
CYP26B1 DEZT8FM Definitive Genetic Variation [38]
DIO3 DET89OV Definitive Biomarker [39]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 DME(s)
This Disease Is Related to 85 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
ALX3 OTXZ25PZ Limited Genetic Variation [40]
CECR2 OTF54V3W Limited Genetic Variation [41]
CSRP3 OTECBJMV Limited Biomarker [42]
RIN2 OTCY73U9 Limited Genetic Variation [42]
SELENOH OTZ0QU22 Limited Genetic Variation [43]
TCN1 OTW6A49Y Limited Altered Expression [44]
CFHR1 OT72R16T Disputed Genetic Variation [45]
CITED2 OT812TV7 Disputed Genetic Variation [4]
CRABP2 OTY01V9G Disputed Biomarker [46]
CXCL6 OTFTCQ4O Disputed Genetic Variation [47]
DACT1 OT19Z704 Disputed Genetic Variation [48]
FKBP8 OT8RPSOC Disputed Genetic Variation [49]
GOLGA4 OTCMEHNJ Disputed Genetic Variation [47]
JARID2 OT14UM8H Disputed Genetic Variation [50]
KDM2B OTDMCVW7 Disputed Altered Expression [51]
KRT1 OTIOJWA4 Disputed Biomarker [10]
LST1 OTUVG424 Disputed Biomarker [52]
MAB21L1 OT8FJMU8 Disputed Genetic Variation [53]
MALL OTKGZ89D Disputed Biomarker [52]
NAP1L2 OT8QI4GF Disputed Altered Expression [54]
PRX OT34Z10B Disputed Genetic Variation [55]
SHMT1 OTIINA3J Disputed Genetic Variation [56]
TGIF1 OTN9VHAG Disputed Genetic Variation [57]
TRIP6 OTIPA4ZR Disputed Biomarker [10]
SHROOM3 OTQKC5X2 moderate Genetic Variation [58]
ALDH1L1 OT15HOJX Strong Genetic Variation [59]
ALX1 OTZVARA5 Strong Biomarker [4]
CELSR1 OT7PS8O1 Strong Genetic Variation [60]
CRPPA OTC85K8Q Strong Genetic Variation [61]
DVL1 OTD67RF1 Strong Genetic Variation [62]
DVL2 OTMNYNCM Strong Biomarker [63]
FOXN1 OTE80D6I Strong Genetic Variation [64]
FZD3 OTIWDN78 Strong Posttranslational Modification [65]
FZD6 OTBCPII8 Strong Genetic Variation [66]
GLI3 OTKDOE94 Strong Biomarker [67]
GRHL3 OT1V4ZEH Strong Genetic Variation [68]
INPP5E OTJF2AZ9 Strong Altered Expression [69]
LMNB1 OT100T3P Strong Biomarker [70]
MARCKSL1 OT13J2FM Strong Biomarker [20]
MSX2 OT1WDKE1 Strong Genetic Variation [71]
MTHFD1L OTV01EFP Strong Biomarker [72]
NOG OTGRHHPG Strong Genetic Variation [73]
PARD3 OTH5BPLO Strong Biomarker [74]
PAX1 OT0Y3MIM Strong Genetic Variation [75]
PCMT1 OTGYVSGU Strong Genetic Variation [76]
PRICKLE1 OT9HHEM9 Strong Biomarker [77]
PRKACB OT6RMDCE Strong Genetic Variation [78]
RAB11FIP3 OTDFFCZA Strong Biomarker [4]
RAB23 OTBAKFBR Strong Altered Expression [79]
RXYLT1 OTQTO7VU Strong Genetic Variation [61]
SCRIB OTW4N3FV Strong Biomarker [3]
SMARCC1 OTUOMBE7 Strong Genetic Variation [80]
SOX3 OT1CRCOB Strong Biomarker [81]
SPINT2 OTQV7BKQ Strong Altered Expression [13]
TBX1 OTQLBPRA Strong Biomarker [82]
TBXT OTHCO2F0 Strong Biomarker [83]
TCN2 OT41D0L3 Strong Biomarker [67]
TRAF4 OTJLRVMC Strong Biomarker [4]
TRDMT1 OTAYQ8ZF Strong Biomarker [84]
AMT OTQYEWZQ Definitive Genetic Variation [37]
ANKRD6 OTM86B04 Definitive Genetic Variation [85]
CDH23 OTOJGQ7S Definitive Genetic Variation [86]
CTNNA1 OTFC725Z Definitive Genetic Variation [29]
CUL4B OT2QX4DO Definitive Altered Expression [87]
DLX5 OTEEFBEU Definitive Altered Expression [88]
DVL3 OTPRROHJ Definitive Biomarker [63]
EMG1 OTFDX7HY Definitive Genetic Variation [89]
GCKR OTSIWXGG Definitive Genetic Variation [90]
GPC5 OT8NR7GC Definitive Altered Expression [91]
GPR161 OT80FYA3 Definitive Genetic Variation [92]
HHEX OTLIUVYX Definitive Genetic Variation [90]
ITPK1 OTP4PGL6 Definitive Genetic Variation [93]
LIG3 OT48SKET Definitive Genetic Variation [94]
NHLRC2 OTY4HPWB Definitive Genetic Variation [95]
NKX2-8 OT6Q3DJ0 Definitive Genetic Variation [96]
NOL3 OT1K0L0D Definitive Altered Expression [97]
POU3F1 OTYARA94 Definitive Genetic Variation [33]
SALL2 OTQWI68Q Definitive Biomarker [98]
SEC24B OT6W8CWP Definitive Genetic Variation [99]
SHROOM1 OTUP99ZD Definitive Genetic Variation [100]
SHROOM2 OTZ2FJ7Q Definitive Genetic Variation [100]
SKI OT4KJ8F6 Definitive Biomarker [101]
SUFU OT0IRYG1 Definitive Genetic Variation [102]
TCTN3 OTZSHERV Definitive Biomarker [103]
TRADD OTBOSJHO Definitive Altered Expression [104]
------------------------------------------------------------------------------------
⏷ Show the Full List of 85 DOT(s)

References

1 PCP-dependent transcellular regulation of actomyosin oscillation facilitates convergent extension of vertebrate tissue.Dev Biol. 2019 Feb 15;446(2):159-167. doi: 10.1016/j.ydbio.2018.12.017. Epub 2018 Dec 21.
2 Temporal expression of genes involved in folate metabolism and transport during placental development, preeclampsia and neural tube defects.Mol Biol Rep. 2019 Jun;46(3):3193-3201. doi: 10.1007/s11033-019-04776-w. Epub 2019 Apr 2.
3 Scribble1 plays an important role in the pathogenesis of neural tube defects through its mediating effect of Par-3 and Vangl1/2 localization.Hum Mol Genet. 2017 Jun 15;26(12):2307-2320. doi: 10.1093/hmg/ddx122.
4 Genes encoding critical transcriptional activators for murine neural tube development and human spina bifida: a case-control study.BMC Med Genet. 2010 Oct 8;11:141. doi: 10.1186/1471-2350-11-141.
5 Transcobalamin II receptor polymorphisms are associated with increased risk for neural tube defects.J Med Genet. 2010 Oct;47(10):677-85. doi: 10.1136/jmg.2009.073775. Epub 2010 Jun 24.
6 Embryonic ectoderm development protein is regulated by microRNAs in human neural tube defects.Am J Obstet Gynecol. 2011 Jun;204(6):544.e9-17. doi: 10.1016/j.ajog.2011.01.045. Epub 2011 Apr 16.
7 Association between a 45-bp 3'untranslated insertion/deletion polymorphism in exon 8 of UCP2 gene and neural tube defects in a high-risk area of China.Reprod Sci. 2011 Jun;18(6):556-60. doi: 10.1177/1933719110393026. Epub 2011 Jan 25.
8 Genes encoding catalytic subunits of protein kinase A and risk of spina bifida.Birth Defects Res A Clin Mol Teratol. 2005 Sep;73(9):591-6. doi: 10.1002/bdra.20175.
9 Interaction between maternal periconceptional supplementation of folic acid and reduced folate carrier gene polymorphism of neural tube defects.Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2005 Jun;22(3):284-7.
10 Valproic acid teratogenicity: a toxicogenomics approach.Environ Health Perspect. 2004 Aug;112(12):1225-35. doi: 10.1289/txg.7034.
11 Mice defective in Trpm6 show embryonic mortality and neural tube defects.Hum Mol Genet. 2009 Nov 15;18(22):4367-75. doi: 10.1093/hmg/ddp392. Epub 2009 Aug 18.
12 Genetic and biochemical determinants of serum concentrations of monocyte chemoattractant protein-1, a potential neural tube defect risk factor.Birth Defects Res A Clin Mol Teratol. 2008 Oct;82(10):736-41. doi: 10.1002/bdra.20507.
13 CSF-Based Analysis for Identification of Potential Serum Biomarkers of Neural Tube Defects.Neurosci Bull. 2017 Aug;33(4):436-444. doi: 10.1007/s12264-017-0154-x. Epub 2017 Jul 10.
14 Cubilin, the Intrinsic Factor-Vitamin B12 Receptor in Development and Disease.Curr Med Chem. 2020;27(19):3123-3150. doi: 10.2174/0929867325666181008143945.
15 Caffeine, selected metabolic gene variants, and risk for neural tube defects. Birth Defects Res A Clin Mol Teratol. 2010 Jul;88(7):560-9.
16 Association of FOLH1, DHFR, and MTHFR gene polymorphisms with susceptibility of Neural Tube Defects: A case control study from Eastern India.Birth Defects Res. 2018 Aug 15;110(14):1129-1138. doi: 10.1002/bdr2.1365. Epub 2018 Aug 18.
17 Par3 interacts with Prickle3 to generate apical PCP complexes in the vertebrate neural plate.Elife. 2018 Sep 26;7:e37881. doi: 10.7554/eLife.37881.
18 Overexpression of Grainyhead-like 3 causes spina bifida and interacts genetically with mutant alleles of Grhl2 and Vangl2 in mice.Hum Mol Genet. 2018 Dec 15;27(24):4218-4230. doi: 10.1093/hmg/ddy313.
19 Novel Mutation of LRP6 Identified in Chinese Han Population Links Canonical WNT Signaling to Neural Tube Defects.Birth Defects Res. 2018 Jan 15;110(1):63-71. doi: 10.1002/bdr2.1122. Epub 2017 Sep 29.
20 MARCKS: a case of molecular exaptation?.Int J Biochem Cell Biol. 2000 May;32(5):475-9. doi: 10.1016/s1357-2725(99)00152-1.
21 Haplotype-specific expression of the human PDGFRA gene correlates with the risk of glioblastomas.Int J Cancer. 2008 Jul 15;123(2):322-329. doi: 10.1002/ijc.23432.
22 Variants identified in PTK7 associated with neural tube defects.Mol Genet Genomic Med. 2019 Apr;7(4):e00584. doi: 10.1002/mgg3.584. Epub 2019 Jan 28.
23 Expression of the sonic hedgehog gene in human embryos with neural tube defects.Teratology. 2000 May;61(5):347-54. doi: 10.1002/(SICI)1096-9926(200005)61:5<347::AID-TERA6>3.0.CO;2-#.
24 Diabetes and obesity-related genes and the risk of neural tube defects in the national birth defects prevention study.Am J Epidemiol. 2012 Dec 15;176(12):1101-9. doi: 10.1093/aje/kws190. Epub 2012 Nov 6.
25 Genetic association of the glycine cleavage system genes and myelomeningocele.Birth Defects Res A Clin Mol Teratol. 2016 Oct;106(10):847-853. doi: 10.1002/bdra.23552. Epub 2016 Sep 13.
26 Distribution of congenital anomalies by race/ethnicity and geospatial location in Oklahoma, 1997-2009.Birth Defects Res. 2020 Feb 1;112(3):262-269. doi: 10.1002/bdr2.1631. Epub 2019 Dec 10.
27 Gastrointestinal hormones (anorexigenic peptide YY and orexigenic ghrelin) influence neural tube development.FASEB J. 2007 Jul;21(9):2108-12. doi: 10.1096/fj.06-7621com. Epub 2007 Mar 30.
28 Arsenate-induced maternal glucose intolerance and neural tube defects in a mouse model.Toxicol Appl Pharmacol. 2009 Aug 15;239(1):29-36. doi: 10.1016/j.taap.2009.05.009. Epub 2009 May 14.
29 Fetal DNA hypermethylation in tight junction pathway is associated with neural tube defects: A genome-wide DNA methylation analysis.Epigenetics. 2017 Feb;12(2):157-165. doi: 10.1080/15592294.2016.1277298. Epub 2017 Jan 6.
30 Maternal choline concentrations during pregnancy and choline-related genetic variants as risk factors for neural tube defects.Am J Clin Nutr. 2014 Oct;100(4):1069-74. doi: 10.3945/ajcn.113.079319. Epub 2014 Aug 13.
31 Functional analysis of a missense mutation in the serine protease inhibitor SPINT2 associated with congenital sodium diarrhea.PLoS One. 2014 Apr 10;9(4):e94267. doi: 10.1371/journal.pone.0094267. eCollection 2014.
32 Ribonucleotide reductase subunit R1: a gene conferring sensitivity to valproic acid-induced neural tube defects in mice.Teratology. 2000 Apr;61(4):305-13. doi: 10.1002/(SICI)1096-9926(200004)61:4<305::AID-TERA10>3.0.CO;2-8.
33 Dysregulation of the SIRT1/OCT6 Axis Contributes to Environmental Stress-Induced Neural Induction Defects.Stem Cell Reports. 2017 May 9;8(5):1270-1286. doi: 10.1016/j.stemcr.2017.03.017. Epub 2017 Apr 20.
34 High levels of iron supplementation prevents neural tube defects in the Fpn1(ffe) mouse model.Birth Defects Res. 2017 Jan 30;109(2):81-91. doi: 10.1002/bdra.23542.
35 Evaluation of proton-coupled folate transporter (SLC46A1) polymorphisms as risk factors for neural tube defects and oral clefts.Am J Med Genet A. 2016 Apr;170A(4):1007-16. doi: 10.1002/ajmg.a.37539. Epub 2016 Jan 20.
36 Association of facilitated glucose transporter 2 gene variants with the myelomeningocele phenotype.Birth Defects Res A Clin Mol Teratol. 2015 Jun;103(6):479-87. doi: 10.1002/bdra.23358. Epub 2015 Mar 17.
37 Mutations of the glycine cleavage system genes possibly affect the negative symptoms of schizophrenia through metabolomic profile changes.Psychiatry Clin Neurosci. 2018 Mar;72(3):168-179. doi: 10.1111/pcn.12628. Epub 2018 Jan 31.
38 Genetic contribution of retinoid-related genes to neural tube defects.Hum Mutat. 2018 Apr;39(4):550-562. doi: 10.1002/humu.23397. Epub 2018 Jan 19.
39 Ectopic cross-talk between thyroid and retinoic acid signaling: A possible etiology for spinal neural tube defects.Gene. 2015 Dec 1;573(2):254-60. doi: 10.1016/j.gene.2015.07.048. Epub 2015 Jul 16.
40 Embryonic defence mechanisms against glucose-dependent oxidative stress require enhanced expression of Alx3 to prevent malformations during diabetic pregnancy.Sci Rep. 2017 Mar 24;7(1):389. doi: 10.1038/s41598-017-00334-1.
41 Genetic backgrounds and modifier genes of NTD mouse models: An opportunity for greater understanding of the multifactorial etiology of neural tube defects.Birth Defects Res. 2017 Jan 30;109(2):140-152. doi: 10.1002/bdra.23554.
42 Promoter sequence, expression, and fine chromosomal mapping of the human gene (MLP) encoding the MARCKS-like protein: identification of neighboring and linked polymorphic loci for MLP and MACS and use in the evaluation of human neural tube defects.Genomics. 1998 Apr 15;49(2):253-64. doi: 10.1006/geno.1998.5247.
43 Mini-review: toward understanding mechanisms of genetic neural tube defects in mice.Teratology. 1999 Nov;60(5):292-305. doi: 10.1002/(SICI)1096-9926(199911)60:5<292::AID-TERA10>3.0.CO;2-6.
44 Increased levels of apo-transcobalamins I and II in amniotic fluid from pregnant women with previous neural tube defect offspring.Clin Genet. 1986 Sep;30(3):167-72. doi: 10.1111/j.1399-0004.1986.tb00590.x.
45 The C677T polymorphism of the methylenetetrahydrofolate reductase gene in Mexican mestizo neural-tube defect parents, control mestizo and native populations.Ann Genet. 2000 Apr-Jun;43(2):89-92. doi: 10.1016/s0003-3995(00)90012-1.
46 Analysis of ALDH1A2, CYP26A1, CYP26B1, CRABP1, and CRABP2 in human neural tube defects suggests a possible association with alleles in ALDH1A2.Birth Defects Res A Clin Mol Teratol. 2005 Nov;73(11):868-75. doi: 10.1002/bdra.20183.
47 Role of parental folate pathway single nucleotide polymorphisms in altering the susceptibility to neural tube defects in South India.J Perinat Med. 2010;38(1):63-9. doi: 10.1515/jpm.2009.119.
48 Identification of novel rare mutations of DACT1 in human neural tube defects.Hum Mutat. 2012 Oct;33(10):1450-5. doi: 10.1002/humu.22121. Epub 2012 Jun 19.
49 Mouse Fkbp8 activity is required to inhibit cell death and establish dorso-ventral patterning in the posterior neural tube.Hum Mol Genet. 2008 Feb 15;17(4):587-601. doi: 10.1093/hmg/ddm333. Epub 2007 Nov 13.
50 Gene and microRNA expression in p53-deficient day 8.5 mouse embryos.Birth Defects Res A Clin Mol Teratol. 2009 Jun;85(6):546-55. doi: 10.1002/bdra.20565.
51 Fbxl10/Kdm2b deficiency accelerates neural progenitor cell death and leads to exencephaly.Mol Cell Neurosci. 2011 Mar;46(3):614-24. doi: 10.1016/j.mcn.2011.01.001. Epub 2011 Jan 8.
52 Use of routinely collected amniotic fluid for whole-genome expression analysis of polygenic disorders.Clin Chem. 2006 Nov;52(11):2013-20. doi: 10.1373/clinchem.2006.074971. Epub 2006 Sep 28.
53 Molecular genetic analysis of human homologs of Caenorhabditis elegans mab-21-like 1 gene in patients with neural tube defects.Birth Defects Res A Clin Mol Teratol. 2004 Nov;70(11):885-8. doi: 10.1002/bdra.20084.
54 SNPs in the CpG island of NAP1L2: a possible link between DNA methylation and neural tube defects?.Am J Med Genet. 2002 Jul 1;110(3):208-14. doi: 10.1002/ajmg.10453.
55 A regulating element essential for PDGFRA transcription is recognized by neural tube defect-associated PRX homeobox transcription factors.Biochim Biophys Acta. 2002 Dec 12;1588(3):254-60. doi: 10.1016/s0925-4439(02)00175-8.
56 Interaction between Maternal and Paternal SHMT1 C1420T Predisposes to Neural Tube Defects in the Fetus: Evidence from Case-Control and Family-Based Triad Approaches.Birth Defects Res. 2017 Apr 14. doi: 10.1002/bdra.23623. Online ahead of print.
57 New findings for phenotype-genotype correlations in a large European series of holoprosencephaly cases.J Med Genet. 2011 Nov;48(11):752-60. doi: 10.1136/jmedgenet-2011-100339. Epub 2011 Sep 22.
58 Folic acid modifies the shape of epithelial cells during morphogenesis via a Folr1 and MLCK dependent mechanism.Biol Open. 2019 Jan 22;8(1):bio041160. doi: 10.1242/bio.041160.
59 Association between ALDH1L1 gene polymorphism and neural tube defects in the Chinese Han population.Neurol Sci. 2016 Jul;37(7):1049-54. doi: 10.1007/s10072-016-2527-8. Epub 2016 Mar 18.
60 Genetic analysis of Wnt/PCP genes in neural tube defects.BMC Med Genomics. 2018 Apr 4;11(1):38. doi: 10.1186/s12920-018-0355-9.
61 Identification of mutations in TMEM5 and ISPD as a cause of severe cobblestone lissencephaly. Am J Hum Genet. 2012 Dec 7;91(6):1135-43. doi: 10.1016/j.ajhg.2012.10.009.
62 MARK2/Par1b Insufficiency Attenuates DVL Gene Transcription via Histone Deacetylation in Lumbosacral Spina Bifida.Mol Neurobiol. 2017 Oct;54(8):6304-6316. doi: 10.1007/s12035-016-0164-0. Epub 2016 Oct 6.
63 Genetic analysis of disheveled 2 and disheveled 3 in human neural tube defects.J Mol Neurosci. 2013 Mar;49(3):582-8. doi: 10.1007/s12031-012-9871-9. Epub 2012 Aug 15.
64 FOXN1 homozygous mutation associated with anencephaly and severe neural tube defect in human athymic Nude/SCID fetus.Clin Genet. 2008 Apr;73(4):380-4. doi: 10.1111/j.1399-0004.2008.00977.x.
65 DNA methylation aberrations rather than polymorphisms of FZD3 gene increase the risk of spina bifida in a high-risk region for neural tube defects.Birth Defects Res A Clin Mol Teratol. 2015 Jan;103(1):37-44. doi: 10.1002/bdra.23285. Epub 2014 Aug 18.
66 Polymorphisms in FZD3 and FZD6 genes and risk of neural tube defects in a northern Han Chinese population.Neurol Sci. 2014 Nov;35(11):1701-6. doi: 10.1007/s10072-014-1815-4. Epub 2014 May 10.
67 Exome sequencing of cases with neural tube defects identifies candidate genes involved in one-carbon/vitamin B12 metabolisms and Sonic Hedgehog pathway.Hum Genet. 2019 Jul;138(7):703-713. doi: 10.1007/s00439-019-02015-7. Epub 2019 May 28.
68 Genetic variants in GRHL3 and risk for neural tube defects: A case-control and case-parent triad/control study.Birth Defects Res. 2019 Nov 15;111(19):1468-1478. doi: 10.1002/bdr2.1556. Epub 2019 Jul 22.
69 Relationship Between INPP5E Gene Expression and Embryonic Neural Development in a Mouse Model of Neural Tube Defect.Med Sci Monit. 2018 Apr 7;24:2053-2059. doi: 10.12659/msm.906095.
70 B-type lamins in health and disease.Semin Cell Dev Biol. 2014 May;29(100):158-63. doi: 10.1016/j.semcdb.2013.12.012. Epub 2013 Dec 28.
71 Single nucleotide polymorphisms of the maternal Msx2 gene and their association with fetal neural tube defects in Han ethnic group in Shanxi Province, China.Chin Med J (Engl). 2011 Feb;124(3):374-9.
72 Formate and its role in amino acid metabolism.Curr Opin Clin Nutr Metab Care. 2020 Jan;23(1):23-28. doi: 10.1097/MCO.0000000000000611.
73 A novel mutation in the gene encoding noggin is not causative in human neural tube defects.J Neurogenet. 2002 Jan-Mar;16(1):65-71.
74 Quantitative Measurement of PARD3 Copy Number Variations in Human Neural Tube Defects.Cell Mol Neurobiol. 2018 Apr;38(3):605-614. doi: 10.1007/s10571-017-0506-0. Epub 2017 Jun 16.
75 Pax1/E2a double-mutant mice develop non-lethal neural tube defects that resemble human malformations.Transgenic Res. 2005 Dec;14(6):983-7. doi: 10.1007/s11248-005-2540-9.
76 Maternal PCMT1 gene polymorphisms and the risk of neural tube defects in a Chinese population of Lvliang high-risk area.Gene. 2012 Sep 1;505(2):340-4. doi: 10.1016/j.gene.2012.05.035. Epub 2012 May 27.
77 Junctional neurulation: a unique developmental program shaping a discrete region of the spinal cord highly susceptible to neural tube defects.J Neurosci. 2014 Sep 24;34(39):13208-21. doi: 10.1523/JNEUROSCI.1850-14.2014.
78 Association between PKA gene polymorphism and NTDs in high risk Chinese population in Shanxi.Int J Clin Exp Pathol. 2013 Nov 15;6(12):2968-74. eCollection 2013.
79 Rab23's genetic structure, function and related diseases: a review.Biosci Rep. 2017 Mar 2;37(2):BSR20160410. doi: 10.1042/BSR20160410. Print 2017 Apr 30.
80 A mendelian form of neural tube defect caused by a de novo null variant in SMARCC1 in an identical twin. Ann Neurol. 2018 Feb;83(2):433-436. doi: 10.1002/ana.25152. Epub 2018 Feb 9.
81 Xq27.1 Duplication Encompassing SOX3: Variable Phenotype and Smallest Duplication Associated with Hypopituitarism to Date - A Large Case Series of Unrelated Patients and a Literature Review.Horm Res Paediatr. 2019;92(6):382-389. doi: 10.1159/000503784. Epub 2019 Nov 1.
82 The effect of folic acid deficiency on FGF pathway via Brachyury regulation in neural tube defects.FASEB J. 2019 Apr;33(4):4688-4702. doi: 10.1096/fj.201801536R. Epub 2018 Dec 28.
83 Human T and risk for neural tube defects.J Med Genet. 2002 Mar;39(3):E14. doi: 10.1136/jmg.39.3.e14.
84 Genetic modifiers of folate, vitamin B-12, and homocysteine status in a cross-sectional study of the Canadian population.Am J Clin Nutr. 2015 Jun;101(6):1295-304. doi: 10.3945/ajcn.115.107219. Epub 2015 May 6.
85 Genetic studies of ANKRD6 as a molecular switch between Wnt signaling pathways in human neural tube defects.Birth Defects Res A Clin Mol Teratol. 2015 Jan;103(1):20-6. doi: 10.1002/bdra.23273. Epub 2014 Sep 8.
86 A unique methylation pattern co-segregates with neural tube defect statuses in Han Chinese pedigrees.Neurol Sci. 2017 Dec;38(12):2153-2164. doi: 10.1007/s10072-017-3132-1. Epub 2017 Oct 4.
87 Abnormal level of CUL4B-mediated histone H2A ubiquitination causes disruptive HOX gene expression.Epigenetics Chromatin. 2019 Apr 16;12(1):22. doi: 10.1186/s13072-019-0268-7.
88 Posterior axis formation requires Dlx5/Dlx6 expression at the neural plate border.PLoS One. 2019 Mar 19;14(3):e0214063. doi: 10.1371/journal.pone.0214063. eCollection 2019.
89 Growth arrest in the ribosomopathy, Bowen-Conradi syndrome, is due to dramatically reduced cell proliferation and a defect in mitotic progression.Biochim Biophys Acta. 2015 May;1852(5):1029-37. doi: 10.1016/j.bbadis.2015.02.007. Epub 2015 Feb 20.
90 Association between maternal single nucleotide polymorphisms in genes regulating glucose metabolism and risk for neural tube defects in offspring.Birth Defects Res A Clin Mol Teratol. 2015 Jun;103(6):471-8. doi: 10.1002/bdra.23332. Epub 2014 Nov 5.
91 Copy number variation analysis implicates the cell polarity gene glypican 5 as a human spina bifida candidate gene.Hum Mol Genet. 2013 Mar 15;22(6):1097-111. doi: 10.1093/hmg/dds515. Epub 2012 Dec 7.
92 Dominant negative GPR161 rare variants are risk factors of human spina bifida.Hum Mol Genet. 2019 Jan 15;28(2):200-208. doi: 10.1093/hmg/ddy339.
93 The maternal ITPK1 gene polymorphism is associated with neural tube defects in a high-risk Chinese population.PLoS One. 2014 Jan 20;9(1):e86145. doi: 10.1371/journal.pone.0086145. eCollection 2014.
94 Polymorphism rs1052536 in Base Excision Repair Gene Is a Risk Factor in a High-Risk Area of Neural Tube Defects in China.Med Sci Monit. 2018 Jul 19;24:5015-5026. doi: 10.12659/MSM.907492.
95 Notomelia and related neural tube defects in a baby born in Niger: case report and literature review.Childs Nerv Syst. 2017 Mar;33(3):529-534. doi: 10.1007/s00381-017-3337-x. Epub 2017 Jan 12.
96 Genome-wide association mapping in dogs enables identification of the homeobox gene, NKX2-8, as a genetic component of neural tube defects in humans.PLoS Genet. 2013;9(7):e1003646. doi: 10.1371/journal.pgen.1003646. Epub 2013 Jul 18.
97 Regulation of the expression of tumor necrosis factorrelated genes by abnormal histone H3K27 acetylation: Implications for neural tube defects.Mol Med Rep. 2018 Jun;17(6):8031-8038. doi: 10.3892/mmr.2018.8900. Epub 2018 Apr 19.
98 Developmental SALL2 transcription factor: a new player in cancer.Carcinogenesis. 2017 Jul 1;38(7):680-690. doi: 10.1093/carcin/bgx036.
99 Mutations in the COPII vesicle component gene SEC24B are associated with human neural tube defects.Hum Mutat. 2013 Aug;34(8):1094-101. doi: 10.1002/humu.22338. Epub 2013 May 13.
100 Genetic and functional analysis of SHROOM1-4 in a Chinese neural tube defect cohort.Hum Genet. 2018 Mar;137(3):195-202. doi: 10.1007/s00439-017-1864-x. Epub 2018 Feb 8.
101 Mice lacking the ski proto-oncogene have defects in neurulation, craniofacial, patterning, and skeletal muscle development.Genes Dev. 1997 Aug 15;11(16):2029-39. doi: 10.1101/gad.11.16.2029.
102 An association study between SUFU gene polymorphisms and neural tube defects.Int J Neurosci. 2014 Jun;124(6):436-42. doi: 10.3109/00207454.2013.849249. Epub 2013 Nov 7.
103 Loss of Tctn3 causes neuronal apoptosis and neural tube defects in mice.Cell Death Dis. 2018 May 1;9(5):520. doi: 10.1038/s41419-018-0563-4.
104 Maternal hyperglycemia activates an ASK1-FoxO3a-caspase 8 pathway that leads to embryonic neural tube defects.Sci Signal. 2013 Aug 27;6(290):ra74. doi: 10.1126/scisignal.2004020.