General Information of Drug Off-Target (DOT) (ID: OT85MGDH)

DOT Name E3 ubiquitin-protein ligase rififylin (RFFL)
Synonyms
EC 2.3.2.27; Caspase regulator CARP2; Caspases-8 and -10-associated RING finger protein 2; CARP-2; FYVE-RING finger protein Sakura; Fring; RING finger and FYVE-like domain-containing protein 1; RING finger protein 189; RING finger protein 34-like; RING-type E3 ubiquitin transferase rififylin
Gene Name RFFL
Related Disease
High blood pressure ( )
UniProt ID
RFFL_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1Y02
EC Number
2.3.2.27
Pfam ID
PF21272 ; PF13920
Sequence
MWATCCNWFCLDGQPEEVPPPQGARMQAYSNPGYSSFPSPTGLEPSCKSCGAHFANTARK
QTCLDCKKNFCMTCSSQVGNGPRLCLLCQRFRATAFQREELMKMKVKDLRDYLSLHDIST
EMCREKEELVLLVLGQQPVISQEDRTRASTLSPDFPEQQAFLTQPHSSMVPPTSPNLPSS
SAQATSVPPAQVQENQQANGHVSQDQEEPVYLESVARVPAEDETQSIDSEDSFVPGRRAS
LSDLTDLEDIEGLTVRQLKEILARNFVNYKGCCEKWELMERVTRLYKDQKGLQHLVSGAE
DQNGGAVPSGLEENLCKICMDSPIDCVLLECGHMVTCTKCGKRMNECPICRQYVIRAVHV
FRS
Function
E3 ubiquitin-protein ligase that regulates several biological processes through the ubiquitin-mediated proteasomal degradation of various target proteins. Mediates 'Lys-48'-linked polyubiquitination of PRR5L and its subsequent proteasomal degradation thereby indirectly regulating cell migration through the mTORC2 complex. Ubiquitinates the caspases CASP8 and CASP10, promoting their proteasomal degradation, to negatively regulate cell death downstream of death domain receptors in the extrinsic pathway of apoptosis. Negatively regulates the tumor necrosis factor-mediated signaling pathway through targeting of RIPK1 to ubiquitin-mediated proteasomal degradation. Negatively regulates p53/TP53 through its direct ubiquitination and targeting to proteasomal degradation. Indirectly, may also negatively regulate p53/TP53 through ubiquitination and degradation of SFN. May also play a role in endocytic recycling.
Tissue Specificity Ubiquitous. Detected in spleen, thymus, prostate, testis, ovary, small intestine, colon and peripheral blood leukocytes.
Reactome Pathway
Regulation of TP53 Degradation (R-HSA-6804757 )

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
High blood pressure DISY2OHH Disputed Biomarker [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
21 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of E3 ubiquitin-protein ligase rififylin (RFFL). [2]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of E3 ubiquitin-protein ligase rififylin (RFFL). [3]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of E3 ubiquitin-protein ligase rififylin (RFFL). [4]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of E3 ubiquitin-protein ligase rififylin (RFFL). [5]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of E3 ubiquitin-protein ligase rififylin (RFFL). [3]
Quercetin DM3NC4M Approved Quercetin increases the expression of E3 ubiquitin-protein ligase rififylin (RFFL). [6]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of E3 ubiquitin-protein ligase rififylin (RFFL). [7]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of E3 ubiquitin-protein ligase rififylin (RFFL). [8]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of E3 ubiquitin-protein ligase rififylin (RFFL). [9]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of E3 ubiquitin-protein ligase rififylin (RFFL). [10]
Bortezomib DMNO38U Approved Bortezomib increases the expression of E3 ubiquitin-protein ligase rififylin (RFFL). [11]
Cidofovir DMA13GD Approved Cidofovir increases the expression of E3 ubiquitin-protein ligase rififylin (RFFL). [3]
Ifosfamide DMCT3I8 Approved Ifosfamide increases the expression of E3 ubiquitin-protein ligase rififylin (RFFL). [3]
Clodronate DM9Y6X7 Approved Clodronate increases the expression of E3 ubiquitin-protein ligase rififylin (RFFL). [3]
Ursodeoxycholic acid DMCUT21 Approved Ursodeoxycholic acid affects the expression of E3 ubiquitin-protein ligase rififylin (RFFL). [12]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of E3 ubiquitin-protein ligase rififylin (RFFL). [13]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of E3 ubiquitin-protein ligase rififylin (RFFL). [14]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of E3 ubiquitin-protein ligase rififylin (RFFL). [15]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of E3 ubiquitin-protein ligase rififylin (RFFL). [17]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of E3 ubiquitin-protein ligase rififylin (RFFL). [18]
GALLICACID DM6Y3A0 Investigative GALLICACID increases the expression of E3 ubiquitin-protein ligase rififylin (RFFL). [19]
------------------------------------------------------------------------------------
⏷ Show the Full List of 21 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of E3 ubiquitin-protein ligase rififylin (RFFL). [16]
------------------------------------------------------------------------------------

References

1 Augmented rififylin is a risk factor linked to aberrant cardiomyocyte function, short-QT interval and hypertension.Hypertension. 2011 Apr;57(4):764-71. doi: 10.1161/HYPERTENSIONAHA.110.165803. Epub 2011 Feb 28.
2 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
3 Transcriptomics hit the target: monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
4 Blood transcript immune signatures distinguish a subset of people with elevated serum ALT from others given acetaminophen. Clin Pharmacol Ther. 2016 Apr;99(4):432-41.
5 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
6 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
7 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
8 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
9 Global molecular effects of tocilizumab therapy in rheumatoid arthritis synovium. Arthritis Rheumatol. 2014 Jan;66(1):15-23.
10 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
11 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
12 Gene expression profiling of early primary biliary cirrhosis: possible insights into the mechanism of action of ursodeoxycholic acid. Liver Int. 2008 Aug;28(7):997-1010. doi: 10.1111/j.1478-3231.2008.01744.x. Epub 2008 Apr 15.
13 Benzo[a]pyrene-induced changes in microRNA-mRNA networks. Chem Res Toxicol. 2012 Apr 16;25(4):838-49.
14 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
15 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
16 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
17 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
18 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
19 Gene expression profile analysis of gallic acid-induced cell death process. Sci Rep. 2021 Aug 18;11(1):16743. doi: 10.1038/s41598-021-96174-1.