General Information of Drug Off-Target (DOT) (ID: OT8M5GVO)

DOT Name cAMP-dependent protein kinase inhibitor alpha (PKIA)
Synonyms PKI-alpha; cAMP-dependent protein kinase inhibitor, muscle/brain isoform
Gene Name PKIA
UniProt ID
IPKA_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1CMK ; 1JLU ; 1Q8T ; 1VEB ; 1XH4 ; 1XH5 ; 1XH6 ; 1XH7 ; 1XH8 ; 1XH9 ; 1XHA ; 1YDR ; 2C1A ; 2C1B ; 2F7E ; 2GNI ; 2JDS ; 2JDT ; 2JDV ; 2L1L ; 2UVX ; 2UVY ; 2UVZ ; 2UW0 ; 2UW3 ; 2UW4 ; 2UW5 ; 2UW6 ; 2UW7 ; 2UW8 ; 2VNW ; 2VNY ; 2VO0 ; 2VO3 ; 2VO6 ; 2VO7 ; 3AMA ; 3AMB ; 3L9L ; 3L9M ; 3L9N ; 3MVJ ; 3NX8 ; 3OOG ; 3OVV ; 3OWP ; 3OXT ; 3P0M ; 3POO ; 3VQH ; 3WYG ; 3X2U ; 3X2V ; 3X2W ; 4AXA ; 4IAC ; 4IAD ; 4IAF ; 4IAI ; 4IAK ; 4IAY ; 4IAZ ; 4IB0 ; 4IB1 ; 4IB3 ; 4IE9 ; 4IJ9 ; 4O21 ; 4O22 ; 4UJ1 ; 4UJ2 ; 4UJ9 ; 4UJA ; 4UJB ; 4WB5 ; 4WB6 ; 4WB7 ; 4WB8 ; 4Z83 ; 4Z84 ; 5BX6 ; 5BX7 ; 5DH9 ; 5LCP ; 5LCQ ; 5LCR ; 5LCT ; 5LCU ; 5M0B ; 5M0C ; 5M0L ; 5M0U ; 5M6V ; 5M6Y ; 5M71 ; 5M75 ; 5N23 ; 5XOJ ; 6E21 ; 6E99 ; 6E9L ; 6FRX ; 6QJ7 ; 6X2U ; 6X2V ; 6X2W ; 7UJX ; 7V0G ; 8FE2 ; 8FE5 ; 8FEC
Pfam ID
PF02827
Sequence
MTDVETTYADFIASGRTGRRNAIHDILVSSASGNSNELALKLAGLDINKTEGEEDAQRSS
TEQSGEAQGEAAKSES
Function
Extremely potent competitive inhibitor of cAMP-dependent protein kinase activity, this protein interacts with the catalytic subunit of the enzyme after the cAMP-induced dissociation of its regulatory chains.
KEGG Pathway
Alcoholism (hsa05034 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Mitomycin DMH0ZJE Approved cAMP-dependent protein kinase inhibitor alpha (PKIA) affects the response to substance of Mitomycin. [19]
------------------------------------------------------------------------------------
15 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of cAMP-dependent protein kinase inhibitor alpha (PKIA). [1]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of cAMP-dependent protein kinase inhibitor alpha (PKIA). [2]
Tretinoin DM49DUI Approved Tretinoin increases the expression of cAMP-dependent protein kinase inhibitor alpha (PKIA). [3]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of cAMP-dependent protein kinase inhibitor alpha (PKIA). [4]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of cAMP-dependent protein kinase inhibitor alpha (PKIA). [5]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of cAMP-dependent protein kinase inhibitor alpha (PKIA). [7]
Triclosan DMZUR4N Approved Triclosan decreases the expression of cAMP-dependent protein kinase inhibitor alpha (PKIA). [8]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of cAMP-dependent protein kinase inhibitor alpha (PKIA). [9]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of cAMP-dependent protein kinase inhibitor alpha (PKIA). [10]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of cAMP-dependent protein kinase inhibitor alpha (PKIA). [11]
Bortezomib DMNO38U Approved Bortezomib increases the expression of cAMP-dependent protein kinase inhibitor alpha (PKIA). [12]
Hydroquinone DM6AVR4 Approved Hydroquinone decreases the expression of cAMP-dependent protein kinase inhibitor alpha (PKIA). [13]
Cytarabine DMZD5QR Approved Cytarabine decreases the expression of cAMP-dependent protein kinase inhibitor alpha (PKIA). [14]
Afimoxifene DMFORDT Phase 2 Afimoxifene increases the expression of cAMP-dependent protein kinase inhibitor alpha (PKIA). [15]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of cAMP-dependent protein kinase inhibitor alpha (PKIA). [18]
------------------------------------------------------------------------------------
⏷ Show the Full List of 15 Drug(s)
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of cAMP-dependent protein kinase inhibitor alpha (PKIA). [6]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of cAMP-dependent protein kinase inhibitor alpha (PKIA). [16]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the methylation of cAMP-dependent protein kinase inhibitor alpha (PKIA). [17]
------------------------------------------------------------------------------------

References

1 Design principles of concentration-dependent transcriptome deviations in drug-exposed differentiating stem cells. Chem Res Toxicol. 2014 Mar 17;27(3):408-20.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
4 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
5 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
6 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
7 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
8 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
9 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
10 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
11 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
12 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
13 Keratinocyte-derived IL-36gama plays a role in hydroquinone-induced chemical leukoderma through inhibition of melanogenesis in human epidermal melanocytes. Arch Toxicol. 2019 Aug;93(8):2307-2320.
14 Cytosine arabinoside induces ectoderm and inhibits mesoderm expression in human embryonic stem cells during multilineage differentiation. Br J Pharmacol. 2011 Apr;162(8):1743-56.
15 Gene expression preferentially regulated by tamoxifen in breast cancer cells and correlations with clinical outcome. Cancer Res. 2006 Jul 15;66(14):7334-40.
16 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
17 Expression and DNA methylation changes in human breast epithelial cells after bisphenol A exposure. Int J Oncol. 2012 Jul;41(1):369-77.
18 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
19 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.