General Information of Drug Off-Target (DOT) (ID: OT9ODC8X)

DOT Name Magnesium transporter NIPA1 (NIPA1)
Synonyms Non-imprinted in Prader-Willi/Angelman syndrome region protein 1; Spastic paraplegia 6 protein
Gene Name NIPA1
Related Disease
Acute myelogenous leukaemia ( )
Anorexia nervosa cachexia ( )
Autism ( )
Epilepsy ( )
Epilepsy, idiopathic generalized ( )
Hereditary spastic paraplegia ( )
Hereditary spastic paraplegia 4 ( )
Hereditary spastic paraplegia 6 ( )
Peripheral neuropathy ( )
Schizophrenia ( )
Vascular purpura ( )
Fetal growth restriction ( )
Prader-Willi syndrome ( )
Angelman syndrome ( )
Paraplegia ( )
UniProt ID
NIPA1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF05653
Sequence
MGTAAAAAAAAAAAAAGEGARSPSPAAVSLGLGVAVVSSLVNGSTFVLQKKGIVRAKRRG
TSYLTDIVWWAGTIAMAVGQIGNFLAYTAVPTVLVTPLGALGVPFGSILASYLLKEKLNI
LGKLGCLLSCAGSVVLIIHSPKSESVTTQAELEEKLTNPVFVGYLCIVLLMLLLLIFWIA
PAHGPTNIMVYISICSLLGSFTVPSTKGIGLAAQDILHNNPSSQRALCLCLVLLAVLGCS
IIVQFRYINKALECFDSSVFGAIYYVVFTTLVLLASAILFREWSNVGLVDFLGMACGFTT
VSVGIVLIQVFKEFNFNLGEMNKSNMKTD
Function Acts as a Mg(2+) transporter. Can also transport other divalent cations such as Fe(2+), Sr(2+), Ba(2+), Zn(2+) and Co(2+) but to a much less extent than Mg(2+).
Tissue Specificity Widely expressed with highest levels in neuronal tissues.
Reactome Pathway
Miscellaneous transport and binding events (R-HSA-5223345 )

Molecular Interaction Atlas (MIA) of This DOT

15 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Acute myelogenous leukaemia DISCSPTN Strong Biomarker [1]
Anorexia nervosa cachexia DISFO5RQ Strong Biomarker [2]
Autism DISV4V1Z Strong Biomarker [2]
Epilepsy DISBB28L Strong Genetic Variation [3]
Epilepsy, idiopathic generalized DISODZC9 Strong Biomarker [3]
Hereditary spastic paraplegia DISGZQV1 Strong Genetic Variation [4]
Hereditary spastic paraplegia 4 DISFUYL2 Strong Genetic Variation [5]
Hereditary spastic paraplegia 6 DISVB8NO Strong Autosomal dominant [6]
Peripheral neuropathy DIS7KN5G Strong Biomarker [7]
Schizophrenia DISSRV2N Strong Biomarker [2]
Vascular purpura DIS6ZZMF Strong Biomarker [8]
Fetal growth restriction DIS5WEJ5 moderate Biomarker [9]
Prader-Willi syndrome DISYWMLU moderate Altered Expression [10]
Angelman syndrome DIS4QVXO Disputed Genetic Variation [11]
Paraplegia DISSKWBI Limited Genetic Variation [12]
------------------------------------------------------------------------------------
⏷ Show the Full List of 15 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
9 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate affects the expression of Magnesium transporter NIPA1 (NIPA1). [13]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Magnesium transporter NIPA1 (NIPA1). [14]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Magnesium transporter NIPA1 (NIPA1). [15]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Magnesium transporter NIPA1 (NIPA1). [16]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Magnesium transporter NIPA1 (NIPA1). [17]
Marinol DM70IK5 Approved Marinol increases the expression of Magnesium transporter NIPA1 (NIPA1). [18]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Magnesium transporter NIPA1 (NIPA1). [19]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Magnesium transporter NIPA1 (NIPA1). [20]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Magnesium transporter NIPA1 (NIPA1). [22]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the methylation of Magnesium transporter NIPA1 (NIPA1). [21]
------------------------------------------------------------------------------------

References

1 SPG6 supports development of acute myeloid leukemia by regulating BMPR2-Smad-Bcl-2/Bcl-xl signaling.Biochem Biophys Res Commun. 2018 Jun 18;501(1):220-225. doi: 10.1016/j.bbrc.2018.04.220. Epub 2018 May 3.
2 Microduplications at the 15q11.2 BP1-BP2 locus are enriched in patients with anorexia nervosa.J Psychiatr Res. 2019 Jun;113:34-38. doi: 10.1016/j.jpsychires.2019.01.021. Epub 2019 Jan 29.
3 NIPA1 mutation in complex hereditary spastic paraplegia with epilepsy.Eur J Neurol. 2011 Sep;18(9):1197-9. doi: 10.1111/j.1468-1331.2011.03359.x. Epub 2011 Feb 22.
4 Association of NIPA1 repeat expansions with amyotrophic lateral sclerosis in a large international cohort.Neurobiol Aging. 2019 Feb;74:234.e9-234.e15. doi: 10.1016/j.neurobiolaging.2018.09.012. Epub 2018 Sep 22.
5 Isolation of CAG/CTG repeats from within the chromosome 2p21-p24 locus for autosomal dominant spastic paraplegia (SPG4) by YAC fragmentation.Hum Genet. 1999 Sep;105(3):217-25. doi: 10.1007/s004390051092.
6 Distinct novel mutations affecting the same base in the NIPA1 gene cause autosomal dominant hereditary spastic paraplegia in two Chinese families. Hum Mutat. 2005 Feb;25(2):135-41. doi: 10.1002/humu.20126.
7 Expansion of the phenotypic spectrum of SPG6 caused by mutation in NIPA1.Clin Neurol Neurosurg. 2011 Jul;113(6):480-2. doi: 10.1016/j.clineuro.2011.02.011. Epub 2011 Mar 17.
8 TDP-43 pathology in a case of hereditary spastic paraplegia with a NIPA1/SPG6 mutation.Acta Neuropathol. 2012 Aug;124(2):285-91. doi: 10.1007/s00401-012-0947-y.
9 Prenatal diagnosis of a familial 15q11.2 (BP1-BP2) microdeletion encompassing TUBGCP5, CYFIP1, NIPA2 and NIPA1 in a fetus with ventriculomegaly, microcephaly and intrauterine growth restriction on prenatal ultrasound.Taiwan J Obstet Gynecol. 2018 Oct;57(5):730-733. doi: 10.1016/j.tjog.2018.08.022.
10 Expression of 4 genes between chromosome 15 breakpoints 1 and 2 and behavioral outcomes in Prader-Willi syndrome.Pediatrics. 2006 Oct;118(4):e1276-83. doi: 10.1542/peds.2006-0424. Epub 2006 Sep 18.
11 Clinical and genetic aspects of the 15q11.2 BP1-BP2 microdeletion disorder.J Intellect Disabil Res. 2017 Jun;61(6):568-579. doi: 10.1111/jir.12382. Epub 2017 Apr 7.
12 NIPA1 (SPG6) mutations are a rare cause of autosomal dominant spastic paraplegia in Europe.Neurogenetics. 2007 Apr;8(2):155-7. doi: 10.1007/s10048-006-0074-9. Epub 2007 Jan 5.
13 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
14 Integrative "-Omics" analysis in primary human hepatocytes unravels persistent mechanisms of cyclosporine A-induced cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
15 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
16 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
17 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
18 THC exposure of human iPSC neurons impacts genes associated with neuropsychiatric disorders. Transl Psychiatry. 2018 Apr 25;8(1):89. doi: 10.1038/s41398-018-0137-3.
19 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
20 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
21 Expression and DNA methylation changes in human breast epithelial cells after bisphenol A exposure. Int J Oncol. 2012 Jul;41(1):369-77.
22 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.