General Information of Drug Off-Target (DOT) (ID: OTA0DE43)

DOT Name Lactosylceramide 1,3-N-acetyl-beta-D-glucosaminyltransferase (B3GNT5)
Synonyms
EC 2.4.1.206; Lactotriaosylceramide synthase; Lc(3)Cer synthase; Lc3 synthase; UDP-GlcNAc:beta-Gal beta-1,3-N-acetylglucosaminyltransferase 5; BGnT-5; Beta-1,3-Gn-T5; Beta-1,3-N-acetylglucosaminyltransferase 5; Beta3Gn-T5
Gene Name B3GNT5
Related Disease
Breast neoplasm ( )
Glioblastoma multiforme ( )
UniProt ID
B3GN5_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
2.4.1.206
Pfam ID
PF01762
Sequence
MRMLVSGRRVKKWQLIIQLFATCFLASLMFFWEPIDNHIVSHMKSYSYRYLINSYDFVND
TLSLKHTSAGPRYQYLINHKEKCQAQDVLLLLFVKTAPENYDRRSGIRRTWGNENYVRSQ
LNANIKTLFALGTPNPLEGEELQRKLAWEDQRYNDIIQQDFVDSFYNLTLKLLMQFSWAN
TYCPHAKFLMTADDDIFIHMPNLIEYLQSLEQIGVQDFWIGRVHRGAPPIRDKSSKYYVS
YEMYQWPAYPDYTAGAAYVISGDVAAKVYEASQTLNSSLYIDDVFMGLCANKIGIVPQDH
VFFSGEGKTPYHPCIYEKMMTSHGHLEDLQDLWKNATDPKVKTISKGFFGQIYCRLMKII
LLCKISYVDTYPCRAAFI
Function
Beta-1,3-N-acetylglucosaminyltransferase that plays a key role in the synthesis of lacto- or neolacto-series carbohydrate chains on glycolipids, notably by participating in biosynthesis of HNK-1 and Lewis X carbohydrate structures. Has strong activity toward lactosylceramide (LacCer) and neolactotetraosylceramide (nLc(4)Cer; paragloboside), resulting in the synthesis of Lc(3)Cer and neolactopentaosylceramide (nLc(5)Cer), respectively. Probably plays a central role in regulating neolacto-series glycolipid synthesis during embryonic development.
Tissue Specificity Widely expressed. Highly expressed in lung, colon, placenta, testis, pituitary gland and cerebellum. Weakly expressed in brain, liver, spleen, lymph node and thymus.
KEGG Pathway
Glycosphingolipid biosynthesis - lacto and neolacto series (hsa00601 )
Metabolic pathways (hsa01100 )
Reactome Pathway
O-linked glycosylation of mucins (R-HSA-913709 )
BioCyc Pathway
MetaCyc:ENSG00000176597-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

2 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Breast neoplasm DISNGJLM Strong Biomarker [1]
Glioblastoma multiforme DISK8246 Strong Altered Expression [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
19 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Lactosylceramide 1,3-N-acetyl-beta-D-glucosaminyltransferase (B3GNT5). [3]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Lactosylceramide 1,3-N-acetyl-beta-D-glucosaminyltransferase (B3GNT5). [4]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Lactosylceramide 1,3-N-acetyl-beta-D-glucosaminyltransferase (B3GNT5). [5]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Lactosylceramide 1,3-N-acetyl-beta-D-glucosaminyltransferase (B3GNT5). [6]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Lactosylceramide 1,3-N-acetyl-beta-D-glucosaminyltransferase (B3GNT5). [7]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Lactosylceramide 1,3-N-acetyl-beta-D-glucosaminyltransferase (B3GNT5). [8]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Lactosylceramide 1,3-N-acetyl-beta-D-glucosaminyltransferase (B3GNT5). [9]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of Lactosylceramide 1,3-N-acetyl-beta-D-glucosaminyltransferase (B3GNT5). [10]
Progesterone DMUY35B Approved Progesterone increases the expression of Lactosylceramide 1,3-N-acetyl-beta-D-glucosaminyltransferase (B3GNT5). [11]
Demecolcine DMCZQGK Approved Demecolcine increases the expression of Lactosylceramide 1,3-N-acetyl-beta-D-glucosaminyltransferase (B3GNT5). [12]
Melphalan DMOLNHF Approved Melphalan increases the expression of Lactosylceramide 1,3-N-acetyl-beta-D-glucosaminyltransferase (B3GNT5). [13]
Clorgyline DMCEUJD Approved Clorgyline increases the expression of Lactosylceramide 1,3-N-acetyl-beta-D-glucosaminyltransferase (B3GNT5). [14]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of Lactosylceramide 1,3-N-acetyl-beta-D-glucosaminyltransferase (B3GNT5). [15]
Belinostat DM6OC53 Phase 2 Belinostat decreases the expression of Lactosylceramide 1,3-N-acetyl-beta-D-glucosaminyltransferase (B3GNT5). [15]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Lactosylceramide 1,3-N-acetyl-beta-D-glucosaminyltransferase (B3GNT5). [16]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Lactosylceramide 1,3-N-acetyl-beta-D-glucosaminyltransferase (B3GNT5). [17]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Lactosylceramide 1,3-N-acetyl-beta-D-glucosaminyltransferase (B3GNT5). [12]
Coumestrol DM40TBU Investigative Coumestrol decreases the expression of Lactosylceramide 1,3-N-acetyl-beta-D-glucosaminyltransferase (B3GNT5). [8]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Lactosylceramide 1,3-N-acetyl-beta-D-glucosaminyltransferase (B3GNT5). [18]
------------------------------------------------------------------------------------
⏷ Show the Full List of 19 Drug(s)

References

1 Glycan-related gene expression signatures in breast cancer subtypes; relation to survival.Mol Oncol. 2015 Apr;9(4):861-76. doi: 10.1016/j.molonc.2014.12.013. Epub 2015 Jan 14.
2 DNA methylation in glioblastoma: impact on gene expression and clinical outcome. BMC Genomics. 2010 Dec 14;11:701.
3 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
4 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
5 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
6 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
7 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
8 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
9 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
10 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
11 Effects of progesterone treatment on expression of genes involved in uterine quiescence. Reprod Sci. 2011 Aug;18(8):781-97.
12 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
13 Bone marrow osteoblast damage by chemotherapeutic agents. PLoS One. 2012;7(2):e30758. doi: 10.1371/journal.pone.0030758. Epub 2012 Feb 17.
14 Anti-oncogenic and pro-differentiation effects of clorgyline, a monoamine oxidase A inhibitor, on high grade prostate cancer cells. BMC Med Genomics. 2009 Aug 20;2:55. doi: 10.1186/1755-8794-2-55.
15 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
16 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
17 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
18 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.