General Information of Drug Off-Target (DOT) (ID: OTAJDLE2)

DOT Name ATP synthase subunit d, mitochondrial (ATP5PD)
Synonyms ATPase subunit d; ATP synthase peripheral stalk subunit d
Gene Name ATP5PD
Related Disease
Advanced cancer ( )
Alzheimer disease ( )
Congenital hypothyroidism ( )
Lung adenocarcinoma ( )
Neoplasm ( )
Schizophrenia ( )
Hepatocellular carcinoma ( )
UniProt ID
ATP5H_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
8H9F; 8H9G; 8H9J; 8H9K; 8H9M; 8H9N; 8H9Q; 8H9R; 8H9S; 8H9T; 8H9U; 8H9V
Pfam ID
PF05873
Sequence
MAGRKLALKTIDWVAFAEIIPQNQKAIASSLKSWNETLTSRLAALPENPPAIDWAYYKAN
VAKAGLVDDFEKKFNALKVPVPEDKYTAQVDAEEKEDVKSCAEWVSLSKARIVEYEKEME
KMKNLIPFDQMTIEDLNEAFPETKLDKKKYPYWPHQPIENL
Function
Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Part of the complex F(0) domain and the peripheric stalk, which acts as a stator to hold the catalytic alpha(3)beta(3) subcomplex and subunit a/ATP6 static relative to the rotary elements.
KEGG Pathway
Oxidative phosphorylation (hsa00190 )
Metabolic pathways (hsa01100 )
Thermogenesis (hsa04714 )
Alzheimer disease (hsa05010 )
Parkinson disease (hsa05012 )
Amyotrophic lateral sclerosis (hsa05014 )
Huntington disease (hsa05016 )
Prion disease (hsa05020 )
Pathways of neurodegeneration - multiple diseases (hsa05022 )
Chemical carcinogenesis - reactive oxygen species (hsa05208 )
Diabetic cardiomyopathy (hsa05415 )
Reactome Pathway
Cristae formation (R-HSA-8949613 )
Formation of ATP by chemiosmotic coupling (R-HSA-163210 )
BioCyc Pathway
MetaCyc:HS09654-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

7 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Advanced cancer DISAT1Z9 Strong Biomarker [1]
Alzheimer disease DISF8S70 Strong Genetic Variation [2]
Congenital hypothyroidism DISL5XVU Strong Biomarker [3]
Lung adenocarcinoma DISD51WR Strong Biomarker [4]
Neoplasm DISZKGEW Strong Biomarker [1]
Schizophrenia DISSRV2N Strong Altered Expression [5]
Hepatocellular carcinoma DIS0J828 Limited Biomarker [6]
------------------------------------------------------------------------------------
⏷ Show the Full List of 7 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Josamycin DMKJ8LB Approved ATP synthase subunit d, mitochondrial (ATP5PD) affects the response to substance of Josamycin. [19]
------------------------------------------------------------------------------------
11 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of ATP synthase subunit d, mitochondrial (ATP5PD). [7]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of ATP synthase subunit d, mitochondrial (ATP5PD). [8]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of ATP synthase subunit d, mitochondrial (ATP5PD). [9]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of ATP synthase subunit d, mitochondrial (ATP5PD). [10]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide decreases the expression of ATP synthase subunit d, mitochondrial (ATP5PD). [11]
Selenium DM25CGV Approved Selenium decreases the expression of ATP synthase subunit d, mitochondrial (ATP5PD). [12]
Sodium lauryl sulfate DMLJ634 Approved Sodium lauryl sulfate increases the expression of ATP synthase subunit d, mitochondrial (ATP5PD). [13]
Dopamine DMPGUCF Approved Dopamine increases the expression of ATP synthase subunit d, mitochondrial (ATP5PD). [14]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of ATP synthase subunit d, mitochondrial (ATP5PD). [16]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of ATP synthase subunit d, mitochondrial (ATP5PD). [17]
chloropicrin DMSGBQA Investigative chloropicrin increases the expression of ATP synthase subunit d, mitochondrial (ATP5PD). [18]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of ATP synthase subunit d, mitochondrial (ATP5PD). [15]
------------------------------------------------------------------------------------

References

1 Mitochondrial reprogramming via ATP5H loss promotes multimodal cancer therapy resistance.J Clin Invest. 2018 Aug 31;128(9):4098-4114. doi: 10.1172/JCI96804. Epub 2018 Aug 20.
2 ATP5H/KCTD2 locus is associated with Alzheimer's disease risk.Mol Psychiatry. 2014 Jun;19(6):682-7. doi: 10.1038/mp.2013.86. Epub 2013 Jul 16.
3 [Proteomic changes in cerebral cortex of neonatal rats with experimental congenital hypothyroidism].Zhonghua Er Ke Za Zhi. 2011 Mar;49(3):209-13.
4 Comparative proteome analysis of human adenocarcinoma.Med Oncol. 2010 Jun;27(2):346-56. doi: 10.1007/s12032-009-9216-x. Epub 2009 Apr 21.
5 Proteomic analysis of dorsolateral prefrontal cortex indicates the involvement of cytoskeleton, oligodendrocyte, energy metabolism and new potential markers in schizophrenia.J Psychiatr Res. 2009 Jul;43(11):978-86. doi: 10.1016/j.jpsychires.2008.11.006. Epub 2008 Dec 24.
6 Hepatocellular carcinoma-associated protein markers investigated by MALDI-TOF MS.Mol Med Rep. 2010 Jul-Aug;3(4):589-96. doi: 10.3892/mmr_00000302.
7 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
8 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
9 Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res. 2012 Nov;22(11):2153-62.
10 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
11 MS4A3-HSP27 target pathway reveals potential for haematopoietic disorder treatment in alimentary toxic aleukia. Cell Biol Toxicol. 2023 Feb;39(1):201-216. doi: 10.1007/s10565-021-09639-4. Epub 2021 Sep 28.
12 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
13 Identification of potential biomarkers for predicting acute dermal irritation by proteomic analysis. J Appl Toxicol. 2011 Nov;31(8):762-72.
14 Mitochondrial proteomics investigation of a cellular model of impaired dopamine homeostasis, an early step in Parkinson's disease pathogenesis. Mol Biosyst. 2014 Jun;10(6):1332-44.
15 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
16 Low-dose Bisphenol A exposure alters the functionality and cellular environment in a human cardiomyocyte model. Environ Pollut. 2023 Oct 15;335:122359. doi: 10.1016/j.envpol.2023.122359. Epub 2023 Aug 9.
17 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
18 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
19 A genome-wide analysis of targets of macrolide antibiotics in mammalian cells. J Biol Chem. 2020 Feb 14;295(7):2057-2067. doi: 10.1074/jbc.RA119.010770. Epub 2020 Jan 8.