General Information of Drug Off-Target (DOT) (ID: OTAM7JTR)

DOT Name Integrin alpha-V (ITGAV)
Synonyms Vitronectin receptor; Vitronectin receptor subunit alpha; CD antigen CD51
Gene Name ITGAV
UniProt ID
ITAV_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1JV2 ; 1L5G ; 1M1X ; 1U8C ; 3IJE ; 4G1E ; 4G1M ; 4MMX ; 4MMY ; 4MMZ ; 4O02 ; 4UM8 ; 4UM9 ; 5FFG ; 5FFO ; 5NEM ; 5NER ; 5NET ; 5NEU ; 6AVQ ; 6AVR ; 6AVU ; 6DJP ; 6MK0 ; 6MSL ; 6MSU ; 6NAJ ; 6OM1 ; 6OM2 ; 6UJA ; 6UJB ; 6UJC ; 7Y1T ; 8TCF ; 8TCG
Pfam ID
PF01839 ; PF08441 ; PF20805 ; PF20806 ; PF00357
Sequence
MAFPPRRRLRLGPRGLPLLLSGLLLPLCRAFNLDVDSPAEYSGPEGSYFGFAVDFFVPSA
SSRMFLLVGAPKANTTQPGIVEGGQVLKCDWSSTRRCQPIEFDATGNRDYAKDDPLEFKS
HQWFGASVRSKQDKILACAPLYHWRTEMKQEREPVGTCFLQDGTKTVEYAPCRSQDIDAD
GQGFCQGGFSIDFTKADRVLLGGPGSFYWQGQLISDQVAEIVSKYDPNVYSIKYNNQLAT
RTAQAIFDDSYLGYSVAVGDFNGDGIDDFVSGVPRAARTLGMVYIYDGKNMSSLYNFTGE
QMAAYFGFSVAATDINGDDYADVFIGAPLFMDRGSDGKLQEVGQVSVSLQRASGDFQTTK
LNGFEVFARFGSAIAPLGDLDQDGFNDIAIAAPYGGEDKKGIVYIFNGRSTGLNAVPSQI
LEGQWAARSMPPSFGYSMKGATDIDKNGYPDLIVGAFGVDRAILYRARPVITVNAGLEVY
PSILNQDNKTCSLPGTALKVSCFNVRFCLKADGKGVLPRKLNFQVELLLDKLKQKGAIRR
ALFLYSRSPSHSKNMTISRGGLMQCEELIAYLRDESEFRDKLTPITIFMEYRLDYRTAAD
TTGLQPILNQFTPANISRQAHILLDCGEDNVCKPKLEVSVDSDQKKIYIGDDNPLTLIVK
AQNQGEGAYEAELIVSIPLQADFIGVVRNNEALARLSCAFKTENQTRQVVCDLGNPMKAG
TQLLAGLRFSVHQQSEMDTSVKFDLQIQSSNLFDKVSPVVSHKVDLAVLAAVEIRGVSSP
DHVFLPIPNWEHKENPETEEDVGPVVQHIYELRNNGPSSFSKAMLHLQWPYKYNNNTLLY
ILHYDIDGPMNCTSDMEINPLRIKISSLQTTEKNDTVAGQGERDHLITKRDLALSEGDIH
TLGCGVAQCLKIVCQVGRLDRGKSAILYVKSLLWTETFMNKENQNHSYSLKSSASFNVIE
FPYKNLPIEDITNSTLVTTNVTWGIQPAPMPVPVWVIILAVLAGLLLLAVLVFVMYRMGF
FKRVRPPQEEQEREQLQPHENGEGNSET
Function
The alpha-V (ITGAV) integrins are receptors for vitronectin, cytotactin, fibronectin, fibrinogen, laminin, matrix metalloproteinase-2, osteopontin, osteomodulin, prothrombin, thrombospondin and vWF. They recognize the sequence R-G-D in a wide array of ligands. ITGAV:ITGB3 binds to fractalkine (CX3CL1) and may act as its coreceptor in CX3CR1-dependent fractalkine signaling. ITGAV:ITGB3 binds to NRG1 (via EGF domain) and this binding is essential for NRG1-ERBB signaling. ITGAV:ITGB3 binds to FGF1 and this binding is essential for FGF1 signaling. ITGAV:ITGB3 binds to FGF2 and this binding is essential for FGF2 signaling. ITGAV:ITGB3 binds to IGF1 and this binding is essential for IGF1 signaling. ITGAV:ITGB3 binds to IGF2 and this binding is essential for IGF2 signaling. ITGAV:ITGB3 binds to IL1B and this binding is essential for IL1B signaling. ITGAV:ITGB3 binds to PLA2G2A via a site (site 2) which is distinct from the classical ligand-binding site (site 1) and this induces integrin conformational changes and enhanced ligand binding to site 1. ITGAV:ITGB3 and ITGAV:ITGB6 act as receptors for fibrillin-1 (FBN1) and mediate R-G-D-dependent cell adhesion to FBN1. Integrin alpha-V/beta-6 or alpha-V/beta-8 (ITGAV:ITGB6 or ITGAV:ITGB8) mediates R-G-D-dependent release of transforming growth factor beta-1 (TGF-beta-1) from regulatory Latency-associated peptide (LAP), thereby playing a key role in TGF-beta-1 activation. ITGAV:ITGB3 acts as a receptor for CD40LG. ITGAV:ITGB3 acts as a receptor for IBSP and promotes cell adhesion and migration to IBSP ; (Microbial infection) Integrin ITGAV:ITGB5 acts as a receptor for Adenovirus type C; (Microbial infection) Integrin ITGAV:ITGB5 and ITGAV:ITGB3 act as receptors for Coxsackievirus A9 and B1; (Microbial infection) Integrin ITGAV:ITGB3 acts as a receptor for Herpes virus 8/HHV-8; (Microbial infection) Integrin ITGAV:ITGB6 acts as a receptor for herpes simplex 1/HHV-1; (Microbial infection) Integrin ITGAV:ITGB3 acts as a receptor for Human parechovirus 1; (Microbial infection) Integrin ITGAV:ITGB3 acts as a receptor for West nile virus; (Microbial infection) In case of HIV-1 infection, the interaction with extracellular viral Tat protein seems to enhance angiogenesis in Kaposi's sarcoma lesions.
KEGG Pathway
Phagosome (hsa04145 )
Efferocytosis (hsa04148 )
PI3K-Akt sig.ling pathway (hsa04151 )
Focal adhesion (hsa04510 )
ECM-receptor interaction (hsa04512 )
Cell adhesion molecules (hsa04514 )
Regulation of actin cytoskeleton (hsa04810 )
Cytoskeleton in muscle cells (hsa04820 )
Thyroid hormone sig.ling pathway (hsa04919 )
Human cytomegalovirus infection (hsa05163 )
Human papillomavirus infection (hsa05165 )
Pathways in cancer (hsa05200 )
Proteoglycans in cancer (hsa05205 )
Small cell lung cancer (hsa05222 )
Hypertrophic cardiomyopathy (hsa05410 )
Arrhythmogenic right ventricular cardiomyopathy (hsa05412 )
Dilated cardiomyopathy (hsa05414 )
Fluid shear stress and atherosclerosis (hsa05418 )
Reactome Pathway
Elastic fibre formation (R-HSA-1566948 )
PECAM1 interactions (R-HSA-210990 )
Molecules associated with elastic fibres (R-HSA-2129379 )
Integrin cell surface interactions (R-HSA-216083 )
TGF-beta receptor signaling activates SMADs (R-HSA-2173789 )
Laminin interactions (R-HSA-3000157 )
Syndecan interactions (R-HSA-3000170 )
ECM proteoglycans (R-HSA-3000178 )
VEGFA-VEGFR2 Pathway (R-HSA-4420097 )
Signal transduction by L1 (R-HSA-445144 )
Neutrophil degranulation (R-HSA-6798695 )
Cross-presentation of particulate exogenous antigens (phagosomes) (R-HSA-1236973 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 2 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Fluorouracil DMUM7HZ Approved Integrin alpha-V (ITGAV) affects the response to substance of Fluorouracil. [30]
Urokinase DM0GOUD Approved Integrin alpha-V (ITGAV) increases the Chromosomal abnormalities and abnormal gene carriers ADR of Urokinase. [31]
------------------------------------------------------------------------------------
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Integrin alpha-V (ITGAV). [1]
------------------------------------------------------------------------------------
28 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Integrin alpha-V (ITGAV). [2]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Integrin alpha-V (ITGAV). [3]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Integrin alpha-V (ITGAV). [4]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Integrin alpha-V (ITGAV). [5]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Integrin alpha-V (ITGAV). [6]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Integrin alpha-V (ITGAV). [7]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide decreases the expression of Integrin alpha-V (ITGAV). [8]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Integrin alpha-V (ITGAV). [9]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Integrin alpha-V (ITGAV). [10]
Isotretinoin DM4QTBN Approved Isotretinoin increases the expression of Integrin alpha-V (ITGAV). [11]
Bortezomib DMNO38U Approved Bortezomib increases the expression of Integrin alpha-V (ITGAV). [12]
Irinotecan DMP6SC2 Approved Irinotecan decreases the expression of Integrin alpha-V (ITGAV). [13]
Testosterone enanthate DMB6871 Approved Testosterone enanthate affects the expression of Integrin alpha-V (ITGAV). [14]
Dasatinib DMJV2EK Approved Dasatinib increases the expression of Integrin alpha-V (ITGAV). [15]
Acocantherin DM7JT24 Approved Acocantherin decreases the expression of Integrin alpha-V (ITGAV). [16]
Epinephrine DM3KJBC Approved Epinephrine increases the expression of Integrin alpha-V (ITGAV). [17]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Integrin alpha-V (ITGAV). [18]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of Integrin alpha-V (ITGAV). [19]
Epigallocatechin gallate DMCGWBJ Phase 3 Epigallocatechin gallate decreases the expression of Integrin alpha-V (ITGAV). [20]
Genistein DM0JETC Phase 2/3 Genistein decreases the expression of Integrin alpha-V (ITGAV). [21]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Integrin alpha-V (ITGAV). [22]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Integrin alpha-V (ITGAV). [23]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Integrin alpha-V (ITGAV). [24]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Integrin alpha-V (ITGAV). [25]
chloropicrin DMSGBQA Investigative chloropicrin decreases the expression of Integrin alpha-V (ITGAV). [26]
Glyphosate DM0AFY7 Investigative Glyphosate decreases the expression of Integrin alpha-V (ITGAV). [27]
D-glucose DMMG2TO Investigative D-glucose decreases the expression of Integrin alpha-V (ITGAV). [28]
Dibutyl phthalate DMEDGKO Investigative Dibutyl phthalate increases the expression of Integrin alpha-V (ITGAV). [29]
------------------------------------------------------------------------------------
⏷ Show the Full List of 28 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
3 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
4 Pretreatment of 3-MA prevents doxorubicin-induced cardiotoxicity through inhibition of autophagy initiation. Toxicology. 2023 May 15;490:153512. doi: 10.1016/j.tox.2023.153512. Epub 2023 Apr 14.
5 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
6 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
7 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
8 Microarray analysis of H2O2-, HNE-, or tBH-treated ARPE-19 cells. Free Radic Biol Med. 2002 Nov 15;33(10):1419-32.
9 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
10 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
11 Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol. 2009 May;1(3):177-87.
12 Synergistic antiproliferative effect of arsenic trioxide combined with bortezomib in HL60 cell line and primary blasts from patients affected by myeloproliferative disorders. Cancer Genet Cytogenet. 2010 Jun;199(2):110-20. doi: 10.1016/j.cancergencyto.2010.02.010.
13 In vitro and in vivo irinotecan-induced changes in expression profiles of cell cycle and apoptosis-associated genes in acute myeloid leukemia cells. Mol Cancer Ther. 2005 Jun;4(6):885-900.
14 Transcriptional profiling of testosterone-regulated genes in the skeletal muscle of human immunodeficiency virus-infected men experiencing weight loss. J Clin Endocrinol Metab. 2007 Jul;92(7):2793-802. doi: 10.1210/jc.2006-2722. Epub 2007 Apr 17.
15 Dasatinib reverses cancer-associated fibroblasts (CAFs) from primary lung carcinomas to a phenotype comparable to that of normal fibroblasts. Mol Cancer. 2010 Jun 27;9:168.
16 Ouabain impairs cell migration, and invasion and alters gene expression of human osteosarcoma U-2 OS cells. Environ Toxicol. 2017 Nov;32(11):2400-2413. doi: 10.1002/tox.22453. Epub 2017 Aug 10.
17 Effects of beta-adrenergic agonists on bone-resorbing activity in human osteoclast-like cells. Biochim Biophys Acta. 2003 May 12;1640(2-3):137-42.
18 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
19 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
20 Molecular mechanisms of action of angiopreventive anti-oxidants on endothelial cells: microarray gene expression analyses. Mutat Res. 2005 Dec 11;591(1-2):198-211.
21 Quantitative proteomics and transcriptomics addressing the estrogen receptor subtype-mediated effects in T47D breast cancer cells exposed to the phytoestrogen genistein. Mol Cell Proteomics. 2011 Jan;10(1):M110.002170.
22 New insights into BaP-induced toxicity: role of major metabolites in transcriptomics and contribution to hepatocarcinogenesis. Arch Toxicol. 2016 Jun;90(6):1449-58.
23 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
24 Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation. Environ Int. 2021 Nov;156:106730. doi: 10.1016/j.envint.2021.106730. Epub 2021 Jun 27.
25 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
26 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
27 Glyphosate-based herbicides at low doses affect canonical pathways in estrogen positive and negative breast cancer cell lines. PLoS One. 2019 Jul 11;14(7):e0219610. doi: 10.1371/journal.pone.0219610. eCollection 2019.
28 Non-nutritional sweeteners effects on endothelial vascular function. Toxicol In Vitro. 2020 Feb;62:104694. doi: 10.1016/j.tiv.2019.104694. Epub 2019 Oct 23.
29 Integration of data from the in vitro long-term exposure study on human endothelial cells and the in silico analysis: A case of dibutyl phthalate-induced vascular dysfunction. Toxicol Lett. 2022 Mar 1;356:64-74. doi: 10.1016/j.toxlet.2021.12.006. Epub 2021 Dec 10.
30 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.
31 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.