General Information of Drug Off-Target (DOT) (ID: OTAQ6YWB)

DOT Name Nucleotide sugar transporter SLC35D1 (SLC35D1)
Synonyms Solute carrier family 35 member D1; UDP-galactose transporter-related protein 7; UGTrel7; UDP-glucuronic acid/UDP-N-acetylgalactosamine transporter; UDP-GlcA/UDP-GalNAc transporter
Gene Name SLC35D1
Related Disease
Schneckenbecken dysplasia ( )
UniProt ID
S35D1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF03151
Sequence
MAEVHRRQHARVKGEAPAKSSTLRDEEELGMASAETLTVFLKLLAAGFYGVSSFLIVVVN
KSVLTNYRFPSSLCVGLGQMVATVAVLWVGKALRVVKFPDLDRNVPRKTFPLPLLYFGNQ
ITGLFSTKKLNLPMFTVLRRFSILFTMFAEGVLLKKTFSWGIKMTVFAMIIGAFVAASSD
LAFDLEGYAFILINDVLTAANGAYVKQKLDSKELGKYGLLYYNALFMILPTLAIAYFTGD
AQKAVEFEGWADTLFLLQFTLSCVMGFILMYATVLCTQYNSALTTTIVGCIKNILITYIG
MVFGGDYIFTWTNFIGLNISIAGSLVYSYITFTEEQLSKQSEANNKLDIKGKGAV
Function
Antiporter that transports nucleotide sugars across the endoplasmic reticulum (ER) membrane in exchange for either their cognate nucleoside monophosphate or another nucleotide sugar. Transports various UDP-sugars including UDP-N-acetyl-alpha-D-glucosamine (UDP-GlcNAc), UDP-N-acetyl-alpha-D-galactosamine (UDP-GalNAc) and UDP-alpha-D-glucuronate (UDP-GlcA), which are used by ER glucosyltransferases as sugar donors for the synthesis of sugar chains of glycoproteins, glycolipids and oligosaccharides. May couple UDP-GlcNAc or UDP-GalNAc efflux to UDP-GlcA influx into the ER lumen that in turn stimulates glucuronidation and subsequent excretion of endobiotics and xenobiotics. Plays a role in chondroitin sulfate biosynthesis, which is important for formation of cartilage extracellular matrix and normal skeletal development.
Tissue Specificity Ubiquitous.
Reactome Pathway
Defective SLC35D1 causes SCHBCKD (R-HSA-5579020 )
Transport of nucleotide sugars (R-HSA-727802 )
Formation of the active cofactor, UDP-glucuronate (R-HSA-173599 )

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Schneckenbecken dysplasia DIS2NNB4 Definitive Autosomal recessive [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Nucleotide sugar transporter SLC35D1 (SLC35D1). [2]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the methylation of Nucleotide sugar transporter SLC35D1 (SLC35D1). [15]
------------------------------------------------------------------------------------
17 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Nucleotide sugar transporter SLC35D1 (SLC35D1). [3]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Nucleotide sugar transporter SLC35D1 (SLC35D1). [4]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Nucleotide sugar transporter SLC35D1 (SLC35D1). [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Nucleotide sugar transporter SLC35D1 (SLC35D1). [6]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Nucleotide sugar transporter SLC35D1 (SLC35D1). [7]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Nucleotide sugar transporter SLC35D1 (SLC35D1). [8]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Nucleotide sugar transporter SLC35D1 (SLC35D1). [9]
Selenium DM25CGV Approved Selenium decreases the expression of Nucleotide sugar transporter SLC35D1 (SLC35D1). [10]
Testosterone enanthate DMB6871 Approved Testosterone enanthate affects the expression of Nucleotide sugar transporter SLC35D1 (SLC35D1). [11]
Zidovudine DM4KI7O Approved Zidovudine increases the expression of Nucleotide sugar transporter SLC35D1 (SLC35D1). [12]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of Nucleotide sugar transporter SLC35D1 (SLC35D1). [13]
Tocopherol DMBIJZ6 Phase 2 Tocopherol decreases the expression of Nucleotide sugar transporter SLC35D1 (SLC35D1). [10]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Nucleotide sugar transporter SLC35D1 (SLC35D1). [14]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Nucleotide sugar transporter SLC35D1 (SLC35D1). [16]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Nucleotide sugar transporter SLC35D1 (SLC35D1). [17]
OXYQUINOLINE DMZVS9Y Investigative OXYQUINOLINE decreases the expression of Nucleotide sugar transporter SLC35D1 (SLC35D1). [8]
Hydroxydimethylarsine Oxide DMPS2B1 Investigative Hydroxydimethylarsine Oxide increases the expression of Nucleotide sugar transporter SLC35D1 (SLC35D1). [18]
------------------------------------------------------------------------------------
⏷ Show the Full List of 17 Drug(s)

References

1 Nucleotide-sugar transporter SLC35D1 is critical to chondroitin sulfate synthesis in cartilage and skeletal development in mouse and human. Nat Med. 2007 Nov;13(11):1363-7. doi: 10.1038/nm1655. Epub 2007 Oct 21.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
4 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
5 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
8 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
9 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
10 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
11 Transcriptional profiling of testosterone-regulated genes in the skeletal muscle of human immunodeficiency virus-infected men experiencing weight loss. J Clin Endocrinol Metab. 2007 Jul;92(7):2793-802. doi: 10.1210/jc.2006-2722. Epub 2007 Apr 17.
12 Differential gene expression in human hepatocyte cell lines exposed to the antiretroviral agent zidovudine. Arch Toxicol. 2014 Mar;88(3):609-23. doi: 10.1007/s00204-013-1169-3. Epub 2013 Nov 30.
13 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
14 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
15 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
16 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
17 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
18 Identification of interspecies concordance of mechanisms of arsenic-induced bladder cancer. Toxicol In Vitro. 2007 Dec;21(8):1513-29. doi: 10.1016/j.tiv.2007.06.021. Epub 2007 Jul 21.