General Information of Drug Off-Target (DOT) (ID: OTAWW3KI)

DOT Name Ras GTPase-activating protein-binding protein 2 (G3BP2)
Synonyms G3BP-2; GAP SH3 domain-binding protein 2
Gene Name G3BP2
Related Disease
Breast cancer ( )
Breast carcinoma ( )
Chikungunya virus infection ( )
Metastatic malignant neoplasm ( )
Neoplasm ( )
Prostate cancer ( )
Prostate carcinoma ( )
Breast neoplasm ( )
Gastritis ( )
Precancerous condition ( )
UniProt ID
G3BP2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
5DRV
Pfam ID
PF02136 ; PF00076
Sequence
MVMEKPSPLLVGREFVRQYYTLLNKAPEYLHRFYGRNSSYVHGGVDASGKPQEAVYGQND
IHHKVLSLNFSECHTKIRHVDAHATLSDGVVVQVMGLLSNSGQPERKFMQTFVLAPEGSV
PNKFYVHNDMFRYEDEVFGDSEPELDEESEDEVEEEQEERQPSPEPVQENANSGYYEAHP
VTNGIEEPLEESSHEPEPEPESETKTEELKPQVEEKNLEELEEKSTTPPPAEPVSLPQEP
PKAFSWASVTSKNLPPSGTVSSSGIPPHVKAPVSQPRVEAKPEVQSQPPRVREQRPRERP
GFPPRGPRPGRGDMEQNDSDNRRIIRYPDSHQLFVGNLPHDIDENELKEFFMSFGNVVEL
RINTKGVGGKLPNFGFVVFDDSEPVQRILIAKPIMFRGEVRLNVEEKKTRAARERETRGG
GDDRRDIRRNDRGPGGPRGIVGGGMMRDRDGRGPPPRGGMAQKLGSGRGTGQMEGRFTGQ
RR
Function
Scaffold protein that plays an essential role in cytoplasmic stress granule formation which acts as a platform for antiviral signaling. Plays an essential role in stress granule formation. Stress granules are membraneless compartments that store mRNAs and proteins, such as stalled translation pre-initiation complexes, in response to stress. Promotes formation of stress granules phase-separated membraneless compartment by undergoing liquid-liquid phase separation (LLPS) upon unfolded RNA-binding: functions as a molecular switch that triggers RNA-dependent LLPS in response to a rise in intracellular free RNA concentrations.
Reactome Pathway
SARS-CoV-2 activates/modulates innate and adaptive immune responses (R-HSA-9705671 )

Molecular Interaction Atlas (MIA) of This DOT

10 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Breast cancer DIS7DPX1 Strong Biomarker [1]
Breast carcinoma DIS2UE88 Strong Biomarker [1]
Chikungunya virus infection DISDXEHY Strong Biomarker [2]
Metastatic malignant neoplasm DIS86UK6 moderate Biomarker [3]
Neoplasm DISZKGEW moderate Biomarker [3]
Prostate cancer DISF190Y moderate Altered Expression [4]
Prostate carcinoma DISMJPLE moderate Biomarker [5]
Breast neoplasm DISNGJLM Limited Biomarker [1]
Gastritis DIS8G07K Limited Altered Expression [6]
Precancerous condition DISV06FL Limited Altered Expression [6]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
5 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Ras GTPase-activating protein-binding protein 2 (G3BP2). [7]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Ras GTPase-activating protein-binding protein 2 (G3BP2). [14]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the phosphorylation of Ras GTPase-activating protein-binding protein 2 (G3BP2). [15]
Coumarin DM0N8ZM Investigative Coumarin decreases the phosphorylation of Ras GTPase-activating protein-binding protein 2 (G3BP2). [15]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the methylation of Ras GTPase-activating protein-binding protein 2 (G3BP2). [18]
------------------------------------------------------------------------------------
9 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Tretinoin DM49DUI Approved Tretinoin increases the expression of Ras GTPase-activating protein-binding protein 2 (G3BP2). [8]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Ras GTPase-activating protein-binding protein 2 (G3BP2). [9]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Ras GTPase-activating protein-binding protein 2 (G3BP2). [10]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Ras GTPase-activating protein-binding protein 2 (G3BP2). [11]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Ras GTPase-activating protein-binding protein 2 (G3BP2). [12]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Ras GTPase-activating protein-binding protein 2 (G3BP2). [13]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Ras GTPase-activating protein-binding protein 2 (G3BP2). [16]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Ras GTPase-activating protein-binding protein 2 (G3BP2). [17]
Deguelin DMXT7WG Investigative Deguelin decreases the expression of Ras GTPase-activating protein-binding protein 2 (G3BP2). [19]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 Drug(s)

References

1 Stress granule-associated protein G3BP2 regulates breast tumor initiation.Proc Natl Acad Sci U S A. 2017 Jan 31;114(5):1033-1038. doi: 10.1073/pnas.1525387114. Epub 2017 Jan 17.
2 Stress granule components G3BP1 and G3BP2 play a proviral role early in Chikungunya virus replication.J Virol. 2015 Apr;89(8):4457-69. doi: 10.1128/JVI.03612-14. Epub 2015 Feb 4.
3 Matrix stiffness drives epithelial-mesenchymal transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway.Nat Cell Biol. 2015 May;17(5):678-88. doi: 10.1038/ncb3157. Epub 2015 Apr 20.
4 TRIM25 enhances cell growth and cell survival by modulating p53 signals via interaction with G3BP2 in prostate cancer.Oncogene. 2018 Apr;37(16):2165-2180. doi: 10.1038/s41388-017-0095-x. Epub 2018 Jan 30.
5 Association of USP10 with G3BP2 Inhibits p53 Signaling and Contributes to Poor Outcome in Prostate Cancer.Mol Cancer Res. 2018 May;16(5):846-856. doi: 10.1158/1541-7786.MCR-17-0471. Epub 2018 Jan 29.
6 Carcinogenic Helicobacter pylori Strains Selectively Dysregulate the In Vivo Gastric Proteome, Which May Be Associated with Stomach Cancer Progression.Mol Cell Proteomics. 2019 Feb;18(2):352-371. doi: 10.1074/mcp.RA118.001181. Epub 2018 Nov 19.
7 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
8 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
9 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
10 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
11 Systems analysis of transcriptome and proteome in retinoic acid/arsenic trioxide-induced cell differentiation/apoptosis of promyelocytic leukemia. Proc Natl Acad Sci U S A. 2005 May 24;102(21):7653-8.
12 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
13 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
14 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
15 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
16 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
17 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
18 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
19 Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Arch Toxicol. 2021 Feb;95(2):591-615. doi: 10.1007/s00204-020-02970-5. Epub 2021 Jan 29.