General Information of Drug Off-Target (DOT) (ID: OTGEX4SR)

DOT Name Diphosphomevalonate decarboxylase (MVD)
Synonyms EC 4.1.1.33; Mevalonate (diphospho)decarboxylase; MDDase; Mevalonate pyrophosphate decarboxylase
Gene Name MVD
Related Disease
Porokeratosis 7, multiple types ( )
Disseminated superficial actinic porokeratosis ( )
UniProt ID
MVD1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
3D4J
EC Number
4.1.1.33
Pfam ID
PF00288 ; PF18376
Sequence
MASEKPLAAVTCTAPVNIAVIKYWGKRDEELVLPINSSLSVTLHQDQLKTTTTAVISKDF
TEDRIWLNGREEDVGQPRLQACLREIRCLARKRRNSRDGDPLPSSLSCKVHVASVNNFPT
AAGLASSAAGYACLAYTLARVYGVESDLSEVARRGSGSACRSLYGGFVEWQMGEQADGKD
SIARQVAPESHWPELRVLILVVSAEKKLTGSTVGMRASVETSPLLRFRAESVVPARMAEM
ARCIRERDFPSFAQLTMKDSNQFHATCLDTFPPISYLNAISWRIIHLVHRFNAHHGDTKV
AYTFDAGPNAVIFTLDDTVAEFVAAVWHGFPPGSNGDTFLKGLQVRPAPLSAELQAALAM
EPTPGGVKYIIVTQVGPGPQILDDPCAHLLGPDGLPKPAA
Function
Catalyzes the ATP dependent decarboxylation of (R)-5-diphosphomevalonate to form isopentenyl diphosphate (IPP). Functions in the mevalonate (MVA) pathway leading to isopentenyl diphosphate (IPP), a key precursor for the biosynthesis of isoprenoids and sterol synthesis.
Tissue Specificity Expressed in heart, skeletal muscle, lung, liver, brain, pancreas, kidney and placenta.
KEGG Pathway
Terpenoid backbone biosynthesis (hsa00900 )
Metabolic pathways (hsa01100 )
Reactome Pathway
Activation of gene expression by SREBF (SREBP) (R-HSA-2426168 )
Synthesis of Dolichyl-phosphate (R-HSA-446199 )
Cholesterol biosynthesis (R-HSA-191273 )
BioCyc Pathway
MetaCyc:ENSG00000167508-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

2 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Porokeratosis 7, multiple types DIS8XEXM Strong Autosomal dominant [1]
Disseminated superficial actinic porokeratosis DISELZ77 Supportive Autosomal dominant [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Biotransformations of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Adenosine triphosphate DM79F6G Approved Diphosphomevalonate decarboxylase (MVD) increases the hydrolysis of Adenosine triphosphate. [25]
------------------------------------------------------------------------------------
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Diphosphomevalonate decarboxylase (MVD). [3]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Diphosphomevalonate decarboxylase (MVD). [21]
------------------------------------------------------------------------------------
21 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Diphosphomevalonate decarboxylase (MVD). [4]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Diphosphomevalonate decarboxylase (MVD). [5]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Diphosphomevalonate decarboxylase (MVD). [6]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Diphosphomevalonate decarboxylase (MVD). [7]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Diphosphomevalonate decarboxylase (MVD). [8]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Diphosphomevalonate decarboxylase (MVD). [9]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Diphosphomevalonate decarboxylase (MVD). [10]
Testosterone DM7HUNW Approved Testosterone increases the expression of Diphosphomevalonate decarboxylase (MVD). [11]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of Diphosphomevalonate decarboxylase (MVD). [12]
Isotretinoin DM4QTBN Approved Isotretinoin decreases the expression of Diphosphomevalonate decarboxylase (MVD). [13]
DTI-015 DMXZRW0 Approved DTI-015 decreases the expression of Diphosphomevalonate decarboxylase (MVD). [14]
Obeticholic acid DM3Q1SM Approved Obeticholic acid decreases the expression of Diphosphomevalonate decarboxylase (MVD). [15]
Curcumin DMQPH29 Phase 3 Curcumin decreases the expression of Diphosphomevalonate decarboxylase (MVD). [16]
Genistein DM0JETC Phase 2/3 Genistein decreases the expression of Diphosphomevalonate decarboxylase (MVD). [17]
GSK2110183 DMZHB37 Phase 2 GSK2110183 increases the expression of Diphosphomevalonate decarboxylase (MVD). [18]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Diphosphomevalonate decarboxylase (MVD). [10]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Diphosphomevalonate decarboxylase (MVD). [19]
PMID26394986-Compound-22 DM43Z1G Patented PMID26394986-Compound-22 decreases the expression of Diphosphomevalonate decarboxylase (MVD). [20]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Diphosphomevalonate decarboxylase (MVD). [22]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Diphosphomevalonate decarboxylase (MVD). [23]
Okadaic acid DM47CO1 Investigative Okadaic acid decreases the expression of Diphosphomevalonate decarboxylase (MVD). [24]
------------------------------------------------------------------------------------
⏷ Show the Full List of 21 Drug(s)

References

1 The Gene Curation Coalition: A global effort to harmonize gene-disease evidence resources. Genet Med. 2022 Aug;24(8):1732-1742. doi: 10.1016/j.gim.2022.04.017. Epub 2022 May 4.
2 Genomic variations of the mevalonate pathway in porokeratosis. Elife. 2015 Jul 23;4:e06322. doi: 10.7554/eLife.06322.
3 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
4 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
5 Blood transcript immune signatures distinguish a subset of people with elevated serum ALT from others given acetaminophen. Clin Pharmacol Ther. 2016 Apr;99(4):432-41.
6 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
7 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
8 Characterisation of cisplatin-induced transcriptomics responses in primary mouse hepatocytes, HepG2 cells and mouse embryonic stem cells shows conservation of regulating transcription factor networks. Mutagenesis. 2014 Jan;29(1):17-26.
9 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
10 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
11 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
12 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
13 Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol. 2009 May;1(3):177-87.
14 Gene expression profile induced by BCNU in human glioma cell lines with differential MGMT expression. J Neurooncol. 2005 Jul;73(3):189-98.
15 Pharmacotoxicology of clinically-relevant concentrations of obeticholic acid in an organotypic human hepatocyte system. Toxicol In Vitro. 2017 Mar;39:93-103.
16 Gene-expression profiling during curcumin-induced apoptosis reveals downregulation of CXCR4. Exp Hematol. 2007 Jan;35(1):84-95.
17 Changes in gene expressions elicited by physiological concentrations of genistein on human endometrial cancer cells. Mol Carcinog. 2006 Oct;45(10):752-63.
18 Novel ATP-competitive Akt inhibitor afuresertib suppresses the proliferation of malignant pleural mesothelioma cells. Cancer Med. 2017 Nov;6(11):2646-2659. doi: 10.1002/cam4.1179. Epub 2017 Sep 27.
19 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
20 Effect of celecoxib on E-cadherin, VEGF, Microvessel density and apoptosis in gastric cancer. Cancer Biol Ther. 2007 Feb;6(2):269-75.
21 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
22 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
23 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
24 Whole genome mRNA transcriptomics analysis reveals different modes of action of the diarrheic shellfish poisons okadaic acid and dinophysis toxin-1 versus azaspiracid-1 in Caco-2 cells. Toxicol In Vitro. 2018 Feb;46:102-112.
25 Post-translational regulation of mevalonate kinase by intermediates of the cholesterol and nonsterol isoprene biosynthetic pathways. J Lipid Res. 1997 Nov;38(11):2216-23.