General Information of Drug Off-Target (DOT) (ID: OTHEE942)

DOT Name Endothelial lipase (LIPG)
Synonyms EC 3.1.1.3; Endothelial cell-derived lipase; EDL; EL; Phospholipase A1; EC 3.1.1.32
Gene Name LIPG
UniProt ID
LIPG_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
3.1.1.3; 3.1.1.32
Pfam ID
PF00151 ; PF01477
Sequence
MSNSVPLLCFWSLCYCFAAGSPVPFGPEGRLEDKLHKPKATQTEVKPSVRFNLRTSKDPE
HEGCYLSVGHSQPLEDCSFNMTAKTFFIIHGWTMSGIFENWLHKLVSALHTREKDANVVV
VDWLPLAHQLYTDAVNNTRVVGHSIARMLDWLQEKDDFSLGNVHLIGYSLGAHVAGYAGN
FVKGTVGRITGLDPAGPMFEGADIHKRLSPDDADFVDVLHTYTRSFGLSIGIQMPVGHID
IYPNGGDFQPGCGLNDVLGSIAYGTITEVVKCEHERAVHLFVDSLVNQDKPSFAFQCTDS
NRFKKGICLSCRKNRCNSIGYNAKKMRNKRNSKMYLKTRAGMPFRVYHYQMKIHVFSYKN
MGEIEPTFYVTLYGTNADSQTLPLEIVERIEQNATNTFLVYTEEDLGDLLKIQLTWEGAS
QSWYNLWKEFRSYLSQPRNPGRELNIRRIRVKSGETQRKLTFCTEDPENTSISPGRELWF
RKCRDGWRMKNETSPTVELP
Function
Exerts both phospholipase and triglyceride lipase activities. More active as a phospholipase than a triglyceride lipase. Hydrolyzes triglycerides, both with short-chain fatty acyl groups (tributyrin) and long-chain fatty acyl groups (triolein) with similar levels of activity toward both types of substrates. Hydrolyzes high density lipoproteins (HDL) more efficiently than other lipoproteins.
Tissue Specificity
High level of expression in the liver, placenta, lung, thyroid, kidney, testis and in the corpus luteum of the ovary. Expressed also in coronary artery endothelial cells, umbilical vein endothelial cells and in hepatocytes and osteosarcoma cell lines. Not detected in heart, brain and muscle.
KEGG Pathway
Glycerolipid metabolism (hsa00561 )
Metabolic pathways (hsa01100 )
Cholesterol metabolism (hsa04979 )
Reactome Pathway
HDL remodeling (R-HSA-8964058 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Mitoxantrone DMM39BF Approved Endothelial lipase (LIPG) affects the response to substance of Mitoxantrone. [25]
------------------------------------------------------------------------------------
25 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Endothelial lipase (LIPG). [1]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Endothelial lipase (LIPG). [2]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Endothelial lipase (LIPG). [3]
Doxorubicin DMVP5YE Approved Doxorubicin affects the expression of Endothelial lipase (LIPG). [4]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Endothelial lipase (LIPG). [5]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Endothelial lipase (LIPG). [2]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Endothelial lipase (LIPG). [6]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Endothelial lipase (LIPG). [7]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Endothelial lipase (LIPG). [8]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of Endothelial lipase (LIPG). [9]
Progesterone DMUY35B Approved Progesterone increases the expression of Endothelial lipase (LIPG). [10]
Niclosamide DMJAGXQ Approved Niclosamide decreases the expression of Endothelial lipase (LIPG). [11]
Hydroquinone DM6AVR4 Approved Hydroquinone increases the expression of Endothelial lipase (LIPG). [12]
Rosiglitazone DMILWZR Approved Rosiglitazone decreases the expression of Endothelial lipase (LIPG). [13]
Ethanol DMDRQZU Approved Ethanol increases the expression of Endothelial lipase (LIPG). [14]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Endothelial lipase (LIPG). [15]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Endothelial lipase (LIPG). [17]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Endothelial lipase (LIPG). [18]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Endothelial lipase (LIPG). [19]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Endothelial lipase (LIPG). [20]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Endothelial lipase (LIPG). [21]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Endothelial lipase (LIPG). [22]
OXYQUINOLINE DMZVS9Y Investigative OXYQUINOLINE decreases the expression of Endothelial lipase (LIPG). [6]
Resorcinol DMM37C0 Investigative Resorcinol increases the expression of Endothelial lipase (LIPG). [23]
T0901317 DMZQVDI Investigative T0901317 increases the expression of Endothelial lipase (LIPG). [24]
------------------------------------------------------------------------------------
⏷ Show the Full List of 25 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Endothelial lipase (LIPG). [16]
------------------------------------------------------------------------------------

References

1 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
4 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
5 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
6 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
7 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
8 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
9 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
10 Coordinate up-regulation of TMEM97 and cholesterol biosynthesis genes in normal ovarian surface epithelial cells treated with progesterone: implications for pathogenesis of ovarian cancer. BMC Cancer. 2007 Dec 11;7:223.
11 Mitochondrial Uncoupling Induces Epigenome Remodeling and Promotes Differentiation in Neuroblastoma. Cancer Res. 2023 Jan 18;83(2):181-194. doi: 10.1158/0008-5472.CAN-22-1029.
12 Keratinocyte-derived IL-36gama plays a role in hydroquinone-induced chemical leukoderma through inhibition of melanogenesis in human epidermal melanocytes. Arch Toxicol. 2019 Aug;93(8):2307-2320.
13 Transcriptomic analysis of untreated and drug-treated differentiated HepaRG cells over a 2-week period. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):27-35.
14 Gene expression signatures after ethanol exposure in differentiating embryoid bodies. Toxicol In Vitro. 2018 Feb;46:66-76.
15 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
16 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
17 CCAT1 is an enhancer-templated RNA that predicts BET sensitivity in colorectal cancer. J Clin Invest. 2016 Feb;126(2):639-52.
18 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
19 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
20 Characterization of the Molecular Alterations Induced by the Prolonged Exposure of Normal Colon Mucosa and Colon Cancer Cells to Low-Dose Bisphenol A. Int J Mol Sci. 2022 Oct 1;23(19):11620. doi: 10.3390/ijms231911620.
21 Cystathionine metabolic enzymes play a role in the inflammation resolution of human keratinocytes in response to sub-cytotoxic formaldehyde exposure. Toxicol Appl Pharmacol. 2016 Nov 1;310:185-194.
22 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
23 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
24 Liver X receptor and retinoic X receptor agonists modulate the expression of genes involved in lipid metabolism in human endothelial cells. Int J Mol Med. 2005 Oct;16(4):717-22.
25 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.