General Information of Drug Off-Target (DOT) (ID: OTHW13AE)

DOT Name Nucleoporin SEH1 (SEH1L)
Synonyms GATOR2 complex protein SEH1; Nup107-160 subcomplex subunit SEH1; SEC13-like protein
Gene Name SEH1L
Related Disease
Schizophrenia ( )
UniProt ID
SEH1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
5A9Q; 7PEQ; 7R5J; 7R5K; 7UHY
Pfam ID
PF00400
Sequence
MFVARSIAADHKDLIHDVSFDFHGRRMATCSSDQSVKVWDKSESGDWHCTASWKTHSGSV
WRVTWAHPEFGQVLASCSFDRTAAVWEEIVGESNDKLRGQSHWVKRTTLVDSRTSVTDVK
FAPKHMGLMLATCSADGIVRIYEAPDVMNLSQWSLQHEISCKLSCSCISWNPSSSRAHSP
MIAVGSDDSSPNAMAKVQIFEYNENTRKYAKAETLMTVTDPVHDIAFAPNLGRSFHILAI
ATKDVRIFTLKPVRKELTSSGGPTKFEIHIVAQFDNHNSQVWRVSWNITGTVLASSGDDG
CVRLWKANYMDNWKCTGILKGNGSPVNGSSQQGTSNPSLGSTIPSLQNSLNGSSAGRKHS
Function
Component of the Nup107-160 subcomplex of the nuclear pore complex (NPC). The Nup107-160 subcomplex is required for the assembly of a functional NPC. The Nup107-160 subcomplex is also required for normal kinetochore microtubule attachment, mitotic progression and chromosome segregation. This subunit plays a role in recruitment of the Nup107-160 subcomplex to the kinetochore ; As a component of the GATOR2 complex, functions as an activator of the amino acid-sensing branch of the mTORC1 signaling pathway. The GATOR2 complex indirectly activates mTORC1 through the inhibition of the GATOR1 subcomplex. GATOR2 probably acts as an E3 ubiquitin-protein ligase toward GATOR1. In the presence of abundant amino acids, the GATOR2 complex mediates ubiquitination of the NPRL2 core component of the GATOR1 complex, leading to GATOR1 inactivation. In the absence of amino acids, GATOR2 is inhibited, activating the GATOR1 complex. Within the GATOR2 complex, SEC13 and SEH1L are required to stabilize the complex.
KEGG Pathway
Nucleocytoplasmic transport (hsa03013 )
mTOR sig.ling pathway (hsa04150 )
Amyotrophic lateral sclerosis (hsa05014 )
Reactome Pathway
Transport of the SLBP independent Mature mRNA (R-HSA-159227 )
Transport of the SLBP Dependant Mature mRNA (R-HSA-159230 )
Transport of Mature mRNA Derived from an Intronless Transcript (R-HSA-159231 )
Transport of Mature mRNA derived from an Intron-Containing Transcript (R-HSA-159236 )
Rev-mediated nuclear export of HIV RNA (R-HSA-165054 )
Transport of Ribonucleoproteins into the Host Nucleus (R-HSA-168271 )
NS1 Mediated Effects on Host Pathways (R-HSA-168276 )
Viral Messenger RNA Synthesis (R-HSA-168325 )
NEP/NS2 Interacts with the Cellular Export Machinery (R-HSA-168333 )
Regulation of Glucokinase by Glucokinase Regulatory Protein (R-HSA-170822 )
Nuclear import of Rev protein (R-HSA-180746 )
Vpr-mediated nuclear import of PICs (R-HSA-180910 )
snRNP Assembly (R-HSA-191859 )
SUMOylation of DNA damage response and repair proteins (R-HSA-3108214 )
SUMOylation of ubiquitinylation proteins (R-HSA-3232142 )
Nuclear Pore Complex (NPC) Disassembly (R-HSA-3301854 )
Regulation of HSF1-mediated heat shock response (R-HSA-3371453 )
SUMOylation of SUMOylation proteins (R-HSA-4085377 )
SUMOylation of chromatin organization proteins (R-HSA-4551638 )
SUMOylation of RNA binding proteins (R-HSA-4570464 )
SUMOylation of DNA replication proteins (R-HSA-4615885 )
Transcriptional regulation by small RNAs (R-HSA-5578749 )
Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC) (R-HSA-5619107 )
tRNA processing in the nucleus (R-HSA-6784531 )
HCMV Early Events (R-HSA-9609690 )
HCMV Late Events (R-HSA-9610379 )
Amino acids regulate mTORC1 (R-HSA-9639288 )
SARS-CoV-2 activates/modulates innate and adaptive immune responses (R-HSA-9705671 )
ISG15 antiviral mechanism (R-HSA-1169408 )

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Schizophrenia DISSRV2N Strong Genetic Variation [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Nucleoporin SEH1 (SEH1L). [2]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the methylation of Nucleoporin SEH1 (SEH1L). [12]
------------------------------------------------------------------------------------
12 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Nucleoporin SEH1 (SEH1L). [3]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Nucleoporin SEH1 (SEH1L). [4]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Nucleoporin SEH1 (SEH1L). [5]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Nucleoporin SEH1 (SEH1L). [6]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Nucleoporin SEH1 (SEH1L). [7]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Nucleoporin SEH1 (SEH1L). [8]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Nucleoporin SEH1 (SEH1L). [9]
Progesterone DMUY35B Approved Progesterone decreases the expression of Nucleoporin SEH1 (SEH1L). [10]
Menadione DMSJDTY Approved Menadione affects the expression of Nucleoporin SEH1 (SEH1L). [9]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Nucleoporin SEH1 (SEH1L). [11]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Nucleoporin SEH1 (SEH1L). [13]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Nucleoporin SEH1 (SEH1L). [14]
------------------------------------------------------------------------------------
⏷ Show the Full List of 12 Drug(s)

References

1 Pleiotropic Meta-Analysis of Cognition, Education, and Schizophrenia Differentiates Roles of Early Neurodevelopmental and Adult Synaptic Pathways.Am J Hum Genet. 2019 Aug 1;105(2):334-350. doi: 10.1016/j.ajhg.2019.06.012.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
4 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
5 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
6 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
7 17-Estradiol Activates HSF1 via MAPK Signaling in ER-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533. doi: 10.3390/cancers11101533.
8 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
9 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
10 Gene expression in endometrial cancer cells (Ishikawa) after short time high dose exposure to progesterone. Steroids. 2008 Jan;73(1):116-28.
11 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
12 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
13 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
14 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.