General Information of Drug Off-Target (DOT) (ID: OTJ9JMKX)

DOT Name Leucine-rich repeat-containing protein 58 (LRRC58)
Gene Name LRRC58
Related Disease
Prostate cancer ( )
Prostate carcinoma ( )
UniProt ID
LRC58_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00560 ; PF13855
Sequence
MEEAGAAVVTAGEAELNWSRLSVSTETLESELEARGEERRGAREALLRLLLPHNRLVSLP
RALGSGFPHLQLLDVSGNALTALGPELLALRGLRTLLAKNNRLGGPSALPKGLAQSPLCR
SLQVLNLSGNCFQEVPASLLELRALQTLSLGGNQLQSIPAEIENLQSLECLYLGGNFIKE
IPPELGNLPSLNYLVLCDNKIQSIPPQLSQLHSLRSLSLHNNLLTYLPREILNLIHLEEL
SLRGNPLVVRFVRDLTYDPPTLLELAARTIKIRNISYTPYDLPGNLLRYLGSASNCPNPK
CGGVYFDCCVRQIKFVDFCGKYRLPLMHYLCSPECSSPCSSASHSSTSQSESDSEDEASV
AARRMQKVLLG

Molecular Interaction Atlas (MIA) of This DOT

2 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Prostate cancer DISF190Y Limited Biomarker [1]
Prostate carcinoma DISMJPLE Limited Biomarker [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
15 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Leucine-rich repeat-containing protein 58 (LRRC58). [2]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Leucine-rich repeat-containing protein 58 (LRRC58). [3]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Leucine-rich repeat-containing protein 58 (LRRC58). [4]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Leucine-rich repeat-containing protein 58 (LRRC58). [5]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Leucine-rich repeat-containing protein 58 (LRRC58). [7]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Leucine-rich repeat-containing protein 58 (LRRC58). [8]
Decitabine DMQL8XJ Approved Decitabine affects the expression of Leucine-rich repeat-containing protein 58 (LRRC58). [9]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Leucine-rich repeat-containing protein 58 (LRRC58). [10]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Leucine-rich repeat-containing protein 58 (LRRC58). [11]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Leucine-rich repeat-containing protein 58 (LRRC58). [12]
Geldanamycin DMS7TC5 Discontinued in Phase 2 Geldanamycin increases the expression of Leucine-rich repeat-containing protein 58 (LRRC58). [13]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Leucine-rich repeat-containing protein 58 (LRRC58). [14]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Leucine-rich repeat-containing protein 58 (LRRC58). [2]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Leucine-rich repeat-containing protein 58 (LRRC58). [15]
crotylaldehyde DMTWRQI Investigative crotylaldehyde decreases the expression of Leucine-rich repeat-containing protein 58 (LRRC58). [16]
------------------------------------------------------------------------------------
⏷ Show the Full List of 15 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Leucine-rich repeat-containing protein 58 (LRRC58). [6]
------------------------------------------------------------------------------------

References

1 Identification of Novel Epigenetic Markers of Prostate Cancer by NotI-Microarray Analysis.Dis Markers. 2015;2015:241301. doi: 10.1155/2015/241301. Epub 2015 Sep 28.
2 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
3 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
4 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
5 Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res. 2012 Nov;22(11):2153-62.
6 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
7 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
8 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
9 Acute hypersensitivity of pluripotent testicular cancer-derived embryonal carcinoma to low-dose 5-aza deoxycytidine is associated with global DNA Damage-associated p53 activation, anti-pluripotency and DNA demethylation. PLoS One. 2012;7(12):e53003. doi: 10.1371/journal.pone.0053003. Epub 2012 Dec 27.
10 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
11 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
12 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
13 Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration. Arch Toxicol. 2016 Jan;90(1):159-80.
14 Bisphenol A Exposure Changes the Transcriptomic and Proteomic Dynamics of Human Retinoblastoma Y79 Cells. Genes (Basel). 2021 Feb 11;12(2):264. doi: 10.3390/genes12020264.
15 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
16 Gene expression profile and cytotoxicity of human bronchial epithelial cells exposed to crotonaldehyde. Toxicol Lett. 2010 Aug 16;197(2):113-22.