General Information of Drug Off-Target (DOT) (ID: OTK3SHT2)

DOT Name 3',5'-cyclic-AMP phosphodiesterase 7B (PDE7B)
Synonyms EC 3.1.4.53; cAMP-specific phosphodiesterase 7B
Gene Name PDE7B
UniProt ID
PDE7B_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
3.1.4.53
Pfam ID
PF00233
Sequence
MSCLMVERCGEILFENPDQNAKCVCMLGDIRLRGQTGVRAERRGSYPFIDFRLLNSTTYS
GEIGTKKKVKRLLSFQRYFHASRLLRGIIPQAPLHLLDEDYLGQARHMLSKVGMWDFDIF
LFDRLTNGNSLVTLLCHLFNTHGLIHHFKLDMVTLHRFLVMVQEDYHSQNPYHNAVHAAD
VTQAMHCYLKEPKLASFLTPLDIMLGLLAAAAHDVDHPGVNQPFLIKTNHHLANLYQNMS
VLENHHWRSTIGMLRESRLLAHLPKEMTQDIEQQLGSLILATDINRQNEFLTRLKAHLHN
KDLRLEDAQDRHFMLQIALKCADICNPCRIWEMSKQWSERVCEEFYRQGELEQKFELEIS
PLCNQQKDSIPSIQIGFMSYIVEPLFREWAHFTGNSTLSENMLGHLAHNKAQWKSLLPRQ
HRSRGSSGSGPDHDHAGQGTESEEQEGDSP
Function
Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes. May be involved in the control of cAMP-mediated neural activity and cAMP metabolism in the brain.
Tissue Specificity Highly expressed in brain . Also expressed in heart, liver, skeletal muscle and pancreas .
KEGG Pathway
Purine metabolism (hsa00230 )
Metabolic pathways (hsa01100 )
Morphine addiction (hsa05032 )
Reactome Pathway
G alpha (s) signalling events (R-HSA-418555 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Biotransformations of 2 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Testosterone enanthate DMB6871 Approved 3',5'-cyclic-AMP phosphodiesterase 7B (PDE7B) increases the hydrolysis of Testosterone enanthate. [15]
[3H]cAMP DMZRQU7 Investigative 3',5'-cyclic-AMP phosphodiesterase 7B (PDE7B) increases the hydrolysis of [3H]cAMP. [16]
------------------------------------------------------------------------------------
13 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of 3',5'-cyclic-AMP phosphodiesterase 7B (PDE7B). [1]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of 3',5'-cyclic-AMP phosphodiesterase 7B (PDE7B). [2]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of 3',5'-cyclic-AMP phosphodiesterase 7B (PDE7B). [3]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of 3',5'-cyclic-AMP phosphodiesterase 7B (PDE7B). [4]
Estradiol DMUNTE3 Approved Estradiol increases the expression of 3',5'-cyclic-AMP phosphodiesterase 7B (PDE7B). [5]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of 3',5'-cyclic-AMP phosphodiesterase 7B (PDE7B). [7]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of 3',5'-cyclic-AMP phosphodiesterase 7B (PDE7B). [8]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of 3',5'-cyclic-AMP phosphodiesterase 7B (PDE7B). [9]
Amiodarone DMUTEX3 Phase 2/3 Trial Amiodarone increases the expression of 3',5'-cyclic-AMP phosphodiesterase 7B (PDE7B). [10]
Belinostat DM6OC53 Phase 2 Belinostat increases the expression of 3',5'-cyclic-AMP phosphodiesterase 7B (PDE7B). [11]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of 3',5'-cyclic-AMP phosphodiesterase 7B (PDE7B). [12]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of 3',5'-cyclic-AMP phosphodiesterase 7B (PDE7B). [11]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of 3',5'-cyclic-AMP phosphodiesterase 7B (PDE7B). [14]
------------------------------------------------------------------------------------
⏷ Show the Full List of 13 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of 3',5'-cyclic-AMP phosphodiesterase 7B (PDE7B). [6]
Coumarin DM0N8ZM Investigative Coumarin decreases the phosphorylation of 3',5'-cyclic-AMP phosphodiesterase 7B (PDE7B). [13]
------------------------------------------------------------------------------------

References

1 Design principles of concentration-dependent transcriptome deviations in drug-exposed differentiating stem cells. Chem Res Toxicol. 2014 Mar 17;27(3):408-20.
2 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
3 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
4 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
5 Bisphenol A effects on gene expression in adipocytes from children: association with metabolic disorders. J Mol Endocrinol. 2015 Jun;54(3):289-303.
6 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
7 Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration. Arch Toxicol. 2016 Jan;90(1):159-80.
8 Global molecular effects of tocilizumab therapy in rheumatoid arthritis synovium. Arthritis Rheumatol. 2014 Jan;66(1):15-23.
9 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
10 Identification by automated screening of a small molecule that selectively eliminates neural stem cells derived from hESCs but not dopamine neurons. PLoS One. 2009 Sep 23;4(9):e7155.
11 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
12 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
13 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
14 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
15 Bioavailability of testosterone enanthate dependent on genetic variation in the phosphodiesterase 7B but not on the uridine 5'-diphospho-glucuronosyltransferase (UGT2B17) gene. Pharmacogenet Genomics. 2011 Jun;21(6):325-32. doi: 10.1097/FPC.0b013e328344c5c6.
16 Identification of human PDE7B, a cAMP-specific phosphodiesterase. Biochem Biophys Res Commun. 2000 May 19;271(3):575-83.