General Information of Drug Off-Target (DOT) (ID: OTNGJDS8)

DOT Name Shugoshin 2 (SGO2)
Synonyms Shugoshin-2; Shugoshin-like 2; Tripin
Gene Name SGO2
Related Disease
Perrault syndrome ( )
UniProt ID
SGO2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Sequence
MECPVMETGSLFTSGIKRHLKDKRISKTTKLNVSLASKIKTKILNNSSIFKISLKHNNRA
LAQALSREKENSRRITTEKMLLQKEVEKLNFENTFLRLKLNNLNKKLIDIEALMNNNLIT
AIEMSSLSEFHQSSFLLSASKKKRISKQCKLMRLPFARVPLTSNDDEDEDKEKMQCDNNI
KSKTLPDIPSSGSTTQPLSTQDNSEVLFLKENNQNVYGLDDSEHISSIVDVPPRESHSHS
DQSSKTSLMSEMRNAQSIGRRWEKPSPSNVTERKKRGSSWESNNLSADTPCATVLDKQHI
SSPELNCNNEINGHTNETNTEMQRNKQDLPGLSSESAREPNAECMNQIEDNDDFQLQKTV
YDADMDLTASEVSKIVTVSTGIKKKSNKKTNEHGMKTFRKVKDSSSEKKRERSKRQFKNS
SDVDIGEKIENRTERSDVLDGKRGAEDPGFIFNNEQLAQMNEQLAQVNELKKMTLQTGFE
QGDRENVLCNKKEKRITNEQEETYSLSQSSGKFHQESKFDKGQNSLTCNKSKASRQTFVI
HKLEKDNLLPNQKDKVTIYENLDVTNEFHTANLSTKDNGNLCDYGTHNILDLKKYVTDIQ
PSEQNESNINKLRKKVNRKTEIISGMNHMYEDNDKDVVHGLKKGNFFFKTQEDKEPISEN
IEVSKELQIPALSTRDNENQCDYRTQNVLGLQKQITNMYPVQQNESKVNKKLRQKVNRKT
EIISEVNHLDNDKSIEYTVKSHSLFLTQKDKEIIPGNLEDPSEFETPALSTKDSGNLYDS
EIQNVLGVKHGHDMQPACQNDSKIGKKPRLNVCQKSEIIPETNQIYENDNKGVHDLEKDN
FFSLTPKDKETISENLQVTNEFQTVDLLIKDNGNLCDYDTQNILELKKYVTDRKSAEQNE
SKINKLRNKVNWKTEIISEMNQIYEDNDKDAHVQESYTKDLDFKVNKSKQKLECQDIINK
HYMEVNSNEKESCDQILDSYKVVKKRKKESSCKAKNILTKAKNKLASQLTESSQTSISLE
SDLKHITSEADSDPGNPVELCKTQKQSTTTLNKKDLPFVEEIKEGECQVKKVNKMTSKSK
KRKTSIDPSPESHEVMERILDSVQGKSTVSEQADKENNLENEKMVKNKPDFYTKAFRSLS
EIHSPNIQDSSFDSVREGLVPLSVSSGKNVIIKENFALECSPAFQVSDDEHEKMNKMKFK
VNRRTQKSGIGDRPLQDLSNTSFVSNNTAESENKSEDLSSERTSRRRRCTPFYFKEPSLR
DKMRR
Function
Cooperates with PPP2CA to protect centromeric cohesin from separase-mediated cleavage in oocytes specifically during meiosis I. Has a crucial role in protecting REC8 at centromeres from cleavage by separase. During meiosis, protects centromeric cohesion complexes until metaphase II/anaphase II transition, preventing premature release of meiosis-specific REC8 cohesin complexes from anaphase I centromeres. Is thus essential for an accurate gametogenesis. May act by targeting PPP2CA to centromeres, thus leading to cohesin dephosphorylation. Essential for recruiting KIF2C to the inner centromere and for correcting defective kinetochore attachments. Involved in centromeric enrichment of AUKRB in prometaphase.
Reactome Pathway
Separation of Sister Chromatids (R-HSA-2467813 )
Resolution of Sister Chromatid Cohesion (R-HSA-2500257 )
RHO GTPases Activate Formins (R-HSA-5663220 )
Mitotic Prometaphase (R-HSA-68877 )
EML4 and NUDC in mitotic spindle formation (R-HSA-9648025 )
Amplification of signal from unattached kinetochores via a MAD2 inhibitory signal (R-HSA-141444 )

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Perrault syndrome DISG2YOV moderate Genetic Variation [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Shugoshin 2 (SGO2). [2]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Shugoshin 2 (SGO2). [10]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Shugoshin 2 (SGO2). [25]
------------------------------------------------------------------------------------
30 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Shugoshin 2 (SGO2). [3]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Shugoshin 2 (SGO2). [4]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Shugoshin 2 (SGO2). [5]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Shugoshin 2 (SGO2). [6]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Shugoshin 2 (SGO2). [7]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Shugoshin 2 (SGO2). [8]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Shugoshin 2 (SGO2). [9]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Shugoshin 2 (SGO2). [11]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Shugoshin 2 (SGO2). [12]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Shugoshin 2 (SGO2). [13]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Shugoshin 2 (SGO2). [14]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Shugoshin 2 (SGO2). [13]
Methotrexate DM2TEOL Approved Methotrexate decreases the expression of Shugoshin 2 (SGO2). [15]
Progesterone DMUY35B Approved Progesterone decreases the expression of Shugoshin 2 (SGO2). [16]
Troglitazone DM3VFPD Approved Troglitazone decreases the expression of Shugoshin 2 (SGO2). [17]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol increases the expression of Shugoshin 2 (SGO2). [18]
Azathioprine DMMZSXQ Approved Azathioprine decreases the expression of Shugoshin 2 (SGO2). [19]
Irinotecan DMP6SC2 Approved Irinotecan decreases the expression of Shugoshin 2 (SGO2). [20]
Dasatinib DMJV2EK Approved Dasatinib decreases the expression of Shugoshin 2 (SGO2). [21]
Lucanthone DMZLBUO Approved Lucanthone decreases the expression of Shugoshin 2 (SGO2). [22]
Resveratrol DM3RWXL Phase 3 Resveratrol increases the expression of Shugoshin 2 (SGO2). [9]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Shugoshin 2 (SGO2). [11]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of Shugoshin 2 (SGO2). [23]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Shugoshin 2 (SGO2). [24]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Shugoshin 2 (SGO2). [26]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Shugoshin 2 (SGO2). [27]
Coumestrol DM40TBU Investigative Coumestrol increases the expression of Shugoshin 2 (SGO2). [9]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Shugoshin 2 (SGO2). [28]
Deguelin DMXT7WG Investigative Deguelin increases the expression of Shugoshin 2 (SGO2). [29]
methyl p-hydroxybenzoate DMO58UW Investigative methyl p-hydroxybenzoate decreases the expression of Shugoshin 2 (SGO2). [30]
------------------------------------------------------------------------------------
⏷ Show the Full List of 30 Drug(s)

References

1 Mutations of SGO2 and CLDN14 collectively cause coincidental Perrault syndrome.Clin Genet. 2017 Feb;91(2):328-332. doi: 10.1111/cge.12867. Epub 2016 Nov 16.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
4 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
5 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
6 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
7 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
8 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
9 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
10 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
11 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
12 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
13 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
14 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
15 Methotrexate modulates folate phenotype and inflammatory profile in EA.hy 926 cells. Eur J Pharmacol. 2014 Jun 5;732:60-7.
16 Effects of progesterone treatment on expression of genes involved in uterine quiescence. Reprod Sci. 2011 Aug;18(8):781-97.
17 Effects of ciglitazone and troglitazone on the proliferation of human stomach cancer cells. World J Gastroenterol. 2009 Jan 21;15(3):310-20.
18 Identification of biomarkers and outcomes of endocrine disruption in human ovarian cortex using In Vitro Models. Toxicology. 2023 Feb;485:153425. doi: 10.1016/j.tox.2023.153425. Epub 2023 Jan 5.
19 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
20 Clinical determinants of response to irinotecan-based therapy derived from cell line models. Clin Cancer Res. 2008 Oct 15;14(20):6647-55.
21 Dasatinib reverses cancer-associated fibroblasts (CAFs) from primary lung carcinomas to a phenotype comparable to that of normal fibroblasts. Mol Cancer. 2010 Jun 27;9:168.
22 Lucanthone is a novel inhibitor of autophagy that induces cathepsin D-mediated apoptosis. J Biol Chem. 2011 Feb 25;286(8):6602-13.
23 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
24 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
25 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
26 Gene expression analysis of human endometrial endothelial cells exposed to Bisphenol A. Reprod Toxicol. 2009 Jul;28(1):18-25. doi: 10.1016/j.reprotox.2009.03.006. Epub 2009 Mar 25.
27 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
28 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
29 Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Arch Toxicol. 2021 Feb;95(2):591-615. doi: 10.1007/s00204-020-02970-5. Epub 2021 Jan 29.
30 Transcriptome dynamics of alternative splicing events revealed early phase of apoptosis induced by methylparaben in H1299 human lung carcinoma cells. Arch Toxicol. 2020 Jan;94(1):127-140. doi: 10.1007/s00204-019-02629-w. Epub 2019 Nov 20.