General Information of Drug Off-Target (DOT) (ID: OTOWP1CT)

DOT Name Thiamine transporter 2 (SLC19A3)
Synonyms ThTr-2; ThTr2; Solute carrier family 19 member 3
Gene Name SLC19A3
Related Disease
Biotin-responsive basal ganglia disease ( )
Leigh syndrome ( )
Infantile spams-psychomotor retardation-progressive brain atrophy-basal ganglia disease syndrome ( )
Obsolete Leigh syndrome with leukodystrophy ( )
Obsolete thiamine-responsive encephalopathy ( )
UniProt ID
S19A3_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF01770
Sequence
MDCYRTSLSSSWIYPTVILCLFGFFSMMRPSEPFLIPYLSGPDKNLTSAEITNEIFPVWT
YSYLVLLLPVFVLTDYVRYKPVIILQGISFIITWLLLLFGQGVKTMQVVEFFYGMVTAAE
VAYYAYIYSVVSPEHYQRVSGYCRSVTLAAYTAGSVLAQLLVSLANMSYFYLNVISLASV
SVAFLFSLFLPMPKKSMFFHAKPSREIKKSSSVNPVLEETHEGEAPGCEEQKPTSEILST
SGKLNKGQLNSLKPSNVTVDVFVQWFQDLKECYSSKRLFYWSLWWAFATAGFNQVLNYVQ
ILWDYKAPSQDSSIYNGAVEAIATFGGAVAAFAVGYVKVNWDLLGELALVVFSVVNAGSL
FLMHYTANIWACYAGYLIFKSSYMLLITIAVFQIAVNLNVERYALVFGINTFIALVIQTI
MTVIVVDQRGLNLPVSIQFLVYGSYFAVIAGIFLMRSMYITYSTKSQKDVQSPAPSENPD
VSHPEEESNIIMSTKL
Function Mediates high affinity thiamine uptake, probably via a proton anti-port mechanism. Has no folate transport activity. Mediates H(+)-dependent pyridoxine transport.
Tissue Specificity Widely expressed but most abundant in placenta, kidney and liver.
KEGG Pathway
Vitamin digestion and absorption (hsa04977 )
Reactome Pathway
Vitamin B1 (thiamin) metabolism (R-HSA-196819 )

Molecular Interaction Atlas (MIA) of This DOT

5 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Biotin-responsive basal ganglia disease DISKPI9G Definitive Autosomal recessive [1]
Leigh syndrome DISWQU45 Definitive Autosomal recessive [2]
Infantile spams-psychomotor retardation-progressive brain atrophy-basal ganglia disease syndrome DISMDM8N Supportive Autosomal recessive [3]
Obsolete Leigh syndrome with leukodystrophy DISABU9D Supportive Autosomal recessive [4]
Obsolete thiamine-responsive encephalopathy DISGZAFU Supportive Autosomal recessive [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Regulation of Drug Effects of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Famotidine DMRL3AB Approved Thiamine transporter 2 (SLC19A3) increases the uptake of Famotidine. [21]
------------------------------------------------------------------------------------
17 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Thiamine transporter 2 (SLC19A3). [5]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Thiamine transporter 2 (SLC19A3). [6]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Thiamine transporter 2 (SLC19A3). [7]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Thiamine transporter 2 (SLC19A3). [8]
Quercetin DM3NC4M Approved Quercetin increases the expression of Thiamine transporter 2 (SLC19A3). [9]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Thiamine transporter 2 (SLC19A3). [10]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Thiamine transporter 2 (SLC19A3). [11]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of Thiamine transporter 2 (SLC19A3). [12]
Menadione DMSJDTY Approved Menadione affects the expression of Thiamine transporter 2 (SLC19A3). [10]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Thiamine transporter 2 (SLC19A3). [13]
Ethanol DMDRQZU Approved Ethanol decreases the expression of Thiamine transporter 2 (SLC19A3). [14]
Zidovudine DM4KI7O Approved Zidovudine decreases the expression of Thiamine transporter 2 (SLC19A3). [15]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Thiamine transporter 2 (SLC19A3). [16]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Thiamine transporter 2 (SLC19A3). [11]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Thiamine transporter 2 (SLC19A3). [18]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Thiamine transporter 2 (SLC19A3). [19]
[3H]thiamine DMSHW2E Investigative [3H]thiamine increases the expression of Thiamine transporter 2 (SLC19A3). [20]
------------------------------------------------------------------------------------
⏷ Show the Full List of 17 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Thiamine transporter 2 (SLC19A3). [17]
------------------------------------------------------------------------------------

References

1 Mutations in a thiamine-transporter gene and Wernicke's-like encephalopathy. N Engl J Med. 2009 Apr 23;360(17):1792-4. doi: 10.1056/NEJMc0809100.
2 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
3 A wide spectrum of clinical and brain MRI findings in patients with SLC19A3 mutations. BMC Med Genet. 2010 Dec 22;11:171. doi: 10.1186/1471-2350-11-171.
4 Exome sequencing reveals a novel Moroccan founder mutation in SLC19A3 as a new cause of early-childhood fatal Leigh syndrome. Brain. 2013 Mar;136(Pt 3):882-90. doi: 10.1093/brain/awt013. Epub 2013 Feb 18.
5 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
6 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
7 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
8 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
9 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
10 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
11 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
12 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
13 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
14 Gene expression signatures after ethanol exposure in differentiating embryoid bodies. Toxicol In Vitro. 2018 Feb;46:66-76.
15 Differential gene expression in human hepatocyte cell lines exposed to the antiretroviral agent zidovudine. Arch Toxicol. 2014 Mar;88(3):609-23. doi: 10.1007/s00204-013-1169-3. Epub 2013 Nov 30.
16 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
17 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
18 Bisphenol A and bisphenol S induce distinct transcriptional profiles in differentiating human primary preadipocytes. PLoS One. 2016 Sep 29;11(9):e0163318.
19 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
20 Thiamin uptake by the human-derived renal epithelial (HEK-293) cells: cellular and molecular mechanisms. Am J Physiol Renal Physiol. 2006 Oct;291(4):F796-805. doi: 10.1152/ajprenal.00078.2006. Epub 2006 May 16.
21 Metformin Is a Substrate and Inhibitor of the Human Thiamine Transporter, THTR-2 (SLC19A3). Mol Pharm. 2015 Dec 7;12(12):4301-10.