General Information of Drug Off-Target (DOT) (ID: OTOXUDV1)

DOT Name TATA box-binding protein-associated factor RNA polymerase I subunit D (TAF1D)
Synonyms RNA polymerase I-specific TBP-associated factor 41 kDa; TAFI41; TATA box-binding protein-associated factor 1D; TBP-associated factor 1D; Transcription initiation factor SL1/TIF-IB subunit D
Gene Name TAF1D
Related Disease
Skin disease ( )
UniProt ID
TAF1D_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF15333
Sequence
MDKSGIDSLDHVTSDAVELANRSDNSSDSSLFKTQCIPYSPKGEKRNPIRKFVRTPESVH
ASDSSSDSSFEPIPLTIKAIFERFKNRKKRYKKKKKRRYQPTGRPRGRPEGRRNPIYSLI
DKKKQFRSRGSGFPFLESENEKNAPWRKILTFEQAVARGFFNYIEKLKYEHHLKESLKQM
NVGEDLENEDFDSRRYKFLDDDGSISPIEESTAEDEDATHLEDNECDIKLAGDSFIVSSE
FPVRLSVYLEEEDITEEAALSKKRATKAKNTGQRGLKM
Function
Component of the transcription factor SL1/TIF-IB complex, which is involved in the assembly of the PIC (preinitiation complex) during RNA polymerase I-dependent transcription. The rate of PIC formation probably is primarily dependent on the rate of association of SL1/TIF-IB with the rDNA promoter. SL1/TIF-IB is involved in stabilization of nucleolar transcription factor 1/UBTF on rDNA. Formation of SL1/TIF-IB excludes the association of TBP with TFIID subunits.
Reactome Pathway
NoRC negatively regulates rRNA expression (R-HSA-427413 )
B-WICH complex positively regulates rRNA expression (R-HSA-5250924 )
RNA Polymerase I Transcription Initiation (R-HSA-73762 )
RNA Polymerase I Promoter Escape (R-HSA-73772 )
RNA Polymerase I Transcription Termination (R-HSA-73863 )
SIRT1 negatively regulates rRNA expression (R-HSA-427359 )

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Skin disease DISDW8R6 Strong Biomarker [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
15 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of TATA box-binding protein-associated factor RNA polymerase I subunit D (TAF1D). [2]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of TATA box-binding protein-associated factor RNA polymerase I subunit D (TAF1D). [3]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of TATA box-binding protein-associated factor RNA polymerase I subunit D (TAF1D). [4]
Arsenic DMTL2Y1 Approved Arsenic decreases the expression of TATA box-binding protein-associated factor RNA polymerase I subunit D (TAF1D). [1]
Temozolomide DMKECZD Approved Temozolomide increases the expression of TATA box-binding protein-associated factor RNA polymerase I subunit D (TAF1D). [6]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of TATA box-binding protein-associated factor RNA polymerase I subunit D (TAF1D). [7]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of TATA box-binding protein-associated factor RNA polymerase I subunit D (TAF1D). [8]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of TATA box-binding protein-associated factor RNA polymerase I subunit D (TAF1D). [9]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol increases the expression of TATA box-binding protein-associated factor RNA polymerase I subunit D (TAF1D). [10]
Tocopherol DMBIJZ6 Phase 2 Tocopherol decreases the expression of TATA box-binding protein-associated factor RNA polymerase I subunit D (TAF1D). [11]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of TATA box-binding protein-associated factor RNA polymerase I subunit D (TAF1D). [12]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of TATA box-binding protein-associated factor RNA polymerase I subunit D (TAF1D). [14]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of TATA box-binding protein-associated factor RNA polymerase I subunit D (TAF1D). [15]
Milchsaure DM462BT Investigative Milchsaure affects the expression of TATA box-binding protein-associated factor RNA polymerase I subunit D (TAF1D). [16]
methyl p-hydroxybenzoate DMO58UW Investigative methyl p-hydroxybenzoate increases the expression of TATA box-binding protein-associated factor RNA polymerase I subunit D (TAF1D). [17]
------------------------------------------------------------------------------------
⏷ Show the Full List of 15 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
TAK-243 DM4GKV2 Phase 1 TAK-243 increases the sumoylation of TATA box-binding protein-associated factor RNA polymerase I subunit D (TAF1D). [13]
------------------------------------------------------------------------------------

References

1 Gene expression profiles in peripheral lymphocytes by arsenic exposure and skin lesion status in a Bangladeshi population. Cancer Epidemiol Biomarkers Prev. 2006 Jul;15(7):1367-75. doi: 10.1158/1055-9965.EPI-06-0106.
2 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
3 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
4 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
5 Gene expression profiles in peripheral lymphocytes by arsenic exposure and skin lesion status in a Bangladeshi population. Cancer Epidemiol Biomarkers Prev. 2006 Jul;15(7):1367-75. doi: 10.1158/1055-9965.EPI-06-0106.
6 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
7 Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells. Toxicol Appl Pharmacol. 2012 Jun 1;261(2):204-16.
8 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
9 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
10 Identification of biomarkers and outcomes of endocrine disruption in human ovarian cortex using In Vitro Models. Toxicology. 2023 Feb;485:153425. doi: 10.1016/j.tox.2023.153425. Epub 2023 Jan 5.
11 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
12 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
13 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
14 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
15 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
16 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
17 Transcriptome dynamics of alternative splicing events revealed early phase of apoptosis induced by methylparaben in H1299 human lung carcinoma cells. Arch Toxicol. 2020 Jan;94(1):127-140. doi: 10.1007/s00204-019-02629-w. Epub 2019 Nov 20.