General Information of Drug Off-Target (DOT) (ID: OTP536HD)

DOT Name Nucleolar protein 58 (NOP58)
Synonyms Nucleolar protein 5
Gene Name NOP58
Related Disease
Hepatocellular carcinoma ( )
Lung adenocarcinoma ( )
UniProt ID
NOP58_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
7MQ8; 7MQ9; 7MQA
Pfam ID
PF01798 ; PF08156
Sequence
MLVLFETSVGYAIFKVLNEKKLQEVDSLWKEFETPEKANKIVKLKHFEKFQDTAEALAAF
TALMEGKINKQLKKVLKKIVKEAHEPLAVADAKLGGVIKEKLNLSCIHSPVVNELMRGIR
SQMDGLIPGVEPREMAAMCLGLAHSLSRYRLKFSADKVDTMIVQAISLLDDLDKELNNYI
MRCREWYGWHFPELGKIISDNLTYCKCLQKVGDRKNYASAKLSELLPEEVEAEVKAAAEI
SMGTEVSEEDICNILHLCTQVIEISEYRTQLYEYLQNRMMAIAPNVTVMVGELVGARLIA
HAGSLLNLAKHAASTVQILGAEKALFRALKSRRDTPKYGLIYHASLVGQTSPKHKGKISR
MLAAKTVLAIRYDAFGEDSSSAMGVENRAKLEARLRTLEDRGIRKISGTGKALAKTEKYE
HKSEVKTYDPSGDSTLPTCSKKRKIEQVDKEDEITEKKAKKAKIKVKVEEEEEEKVAEEE
ETSVKKKKKRGKKKHIKEEPLSEEEPCTSTAIASPEKKKKKKKKRENED
Function
Required for 60S ribosomal subunit biogenesis. Core component of box C/D small nucleolar ribonucleoprotein (snoRNP) particles. Required for the biogenesis of box C/D snoRNAs such as U3, U8 and U14 snoRNAs. Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome.
Tissue Specificity Ubiquitous.
KEGG Pathway
Ribosome biogenesis in eukaryotes (hsa03008 )
Reactome Pathway
rRNA modification in the nucleus and cytosol (R-HSA-6790901 )
Major pathway of rRNA processing in the nucleolus and cytosol (R-HSA-6791226 )
SUMOylation of RNA binding proteins (R-HSA-4570464 )

Molecular Interaction Atlas (MIA) of This DOT

2 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Hepatocellular carcinoma DIS0J828 Definitive Biomarker [1]
Lung adenocarcinoma DISD51WR Strong Biomarker [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
14 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate affects the expression of Nucleolar protein 58 (NOP58). [3]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Nucleolar protein 58 (NOP58). [4]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Nucleolar protein 58 (NOP58). [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Nucleolar protein 58 (NOP58). [6]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Nucleolar protein 58 (NOP58). [7]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Nucleolar protein 58 (NOP58). [8]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Nucleolar protein 58 (NOP58). [9]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Nucleolar protein 58 (NOP58). [10]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Nucleolar protein 58 (NOP58). [10]
Menadione DMSJDTY Approved Menadione affects the expression of Nucleolar protein 58 (NOP58). [9]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol decreases the expression of Nucleolar protein 58 (NOP58). [11]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Nucleolar protein 58 (NOP58). [14]
chloropicrin DMSGBQA Investigative chloropicrin increases the expression of Nucleolar protein 58 (NOP58). [15]
Deguelin DMXT7WG Investigative Deguelin increases the expression of Nucleolar protein 58 (NOP58). [16]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 Drug(s)
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
TAK-243 DM4GKV2 Phase 1 TAK-243 decreases the sumoylation of Nucleolar protein 58 (NOP58). [12]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the phosphorylation of Nucleolar protein 58 (NOP58). [13]
Coumarin DM0N8ZM Investigative Coumarin increases the phosphorylation of Nucleolar protein 58 (NOP58). [13]
------------------------------------------------------------------------------------

References

1 Long noncoding RNA FAM83A-AS1 facilitates hepatocellular carcinoma progression by binding with NOP58 to enhance the mRNA stability of FAM83A.Biosci Rep. 2019 Nov 29;39(11):BSR20192550. doi: 10.1042/BSR20192550.
2 c-Myc targeted regulators of cell metabolism in a transgenic mouse model of papillary lung adenocarcinoma.Oncotarget. 2016 Oct 4;7(40):65514-65539. doi: 10.18632/oncotarget.11804.
3 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
4 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
5 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 17-Estradiol Activates HSF1 via MAPK Signaling in ER-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533. doi: 10.3390/cancers11101533.
8 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
9 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
10 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
11 Identification of biomarkers and outcomes of endocrine disruption in human ovarian cortex using In Vitro Models. Toxicology. 2023 Feb;485:153425. doi: 10.1016/j.tox.2023.153425. Epub 2023 Jan 5.
12 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
13 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
14 Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation. Environ Int. 2021 Nov;156:106730. doi: 10.1016/j.envint.2021.106730. Epub 2021 Jun 27.
15 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
16 Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Arch Toxicol. 2021 Feb;95(2):591-615. doi: 10.1007/s00204-020-02970-5. Epub 2021 Jan 29.