General Information of Drug Off-Target (DOT) (ID: OTPG0K7E)

DOT Name Inosine-5'-monophosphate dehydrogenase 2 (IMPDH2)
Synonyms IMP dehydrogenase 2; IMPD 2; IMPDH 2; EC 1.1.1.205; Inosine-5'-monophosphate dehydrogenase type II; IMP dehydrogenase II; IMPDH-II
Gene Name IMPDH2
UniProt ID
IMDH2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1B3O; 1NF7; 1NFB; 6I0M; 6I0O; 6U8E; 6U8N; 6U8R; 6U8S; 6U9O; 6UA2; 6UA4; 6UA5; 6UAJ; 6UC2; 6UDO; 6UDP; 6UDQ; 8FOZ; 8FUZ; 8G8F; 8G9B
EC Number
1.1.1.205
Pfam ID
PF00571 ; PF00478
Sequence
MADYLISGGTSYVPDDGLTAQQLFNCGDGLTYNDFLILPGYIDFTADQVDLTSALTKKIT
LKTPLVSSPMDTVTEAGMAIAMALTGGIGFIHHNCTPEFQANEVRKVKKYEQGFITDPVV
LSPKDRVRDVFEAKARHGFCGIPITDTGRMGSRLVGIISSRDIDFLKEEEHDCFLEEIMT
KREDLVVAPAGITLKEANEILQRSKKGKLPIVNEDDELVAIIARTDLKKNRDYPLASKDA
KKQLLCGAAIGTHEDDKYRLDLLAQAGVDVVVLDSSQGNSIFQINMIKYIKDKYPNLQVI
GGNVVTAAQAKNLIDAGVDALRVGMGSGSICITQEVLACGRPQATAVYKVSEYARRFGVP
VIADGGIQNVGHIAKALALGASTVMMGSLLAATTEAPGEYFFSDGIRLKKYRGMGSLDAM
DKHLSSQNRYFSEADKIKVAQGVSGAVQDKGSIHKFVPYLIAGIQHSCQDIGAKSLTQVR
AMMYSGELKFEKRTSSAQVEGGVHSLHSYEKRLF
Function
Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Could also have a single-stranded nucleic acid-binding activity and could play a role in RNA and/or DNA metabolism. It may also have a role in the development of malignancy and the growth progression of some tumors.
Tissue Specificity IMPDH1 is the main species in normal leukocytes and IMPDH2 predominates over IMPDH1 in the tumor.
KEGG Pathway
Purine metabolism (hsa00230 )
Drug metabolism - other enzymes (hsa00983 )
Metabolic pathways (hsa01100 )
Nucleotide metabolism (hsa01232 )
Reactome Pathway
Purine ribonucleoside monophosphate biosynthesis (R-HSA-73817 )
Potential therapeutics for SARS (R-HSA-9679191 )
Azathioprine ADME (R-HSA-9748787 )
Neutrophil degranulation (R-HSA-6798695 )
BioCyc Pathway
MetaCyc:HS11242-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Inosine-5'-monophosphate dehydrogenase 2 (IMPDH2). [1]
TAK-243 DM4GKV2 Phase 1 TAK-243 increases the sumoylation of Inosine-5'-monophosphate dehydrogenase 2 (IMPDH2). [19]
------------------------------------------------------------------------------------
24 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Inosine-5'-monophosphate dehydrogenase 2 (IMPDH2). [2]
Acetaminophen DMUIE76 Approved Acetaminophen affects the expression of Inosine-5'-monophosphate dehydrogenase 2 (IMPDH2). [3]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Inosine-5'-monophosphate dehydrogenase 2 (IMPDH2). [4]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Inosine-5'-monophosphate dehydrogenase 2 (IMPDH2). [5]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Inosine-5'-monophosphate dehydrogenase 2 (IMPDH2). [6]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Inosine-5'-monophosphate dehydrogenase 2 (IMPDH2). [7]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Inosine-5'-monophosphate dehydrogenase 2 (IMPDH2). [8]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Inosine-5'-monophosphate dehydrogenase 2 (IMPDH2). [9]
Methotrexate DM2TEOL Approved Methotrexate decreases the expression of Inosine-5'-monophosphate dehydrogenase 2 (IMPDH2). [10]
Marinol DM70IK5 Approved Marinol decreases the expression of Inosine-5'-monophosphate dehydrogenase 2 (IMPDH2). [11]
Fluorouracil DMUM7HZ Approved Fluorouracil increases the expression of Inosine-5'-monophosphate dehydrogenase 2 (IMPDH2). [12]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol decreases the expression of Inosine-5'-monophosphate dehydrogenase 2 (IMPDH2). [13]
Azathioprine DMMZSXQ Approved Azathioprine increases the expression of Inosine-5'-monophosphate dehydrogenase 2 (IMPDH2). [14]
Sodium lauryl sulfate DMLJ634 Approved Sodium lauryl sulfate decreases the expression of Inosine-5'-monophosphate dehydrogenase 2 (IMPDH2). [15]
Ursodeoxycholic acid DMCUT21 Approved Ursodeoxycholic acid affects the expression of Inosine-5'-monophosphate dehydrogenase 2 (IMPDH2). [16]
Aminoglutethimide DMWFHMZ Approved Aminoglutethimide decreases the expression of Inosine-5'-monophosphate dehydrogenase 2 (IMPDH2). [17]
Mercaptopurine DMTM2IK Approved Mercaptopurine increases the expression of Inosine-5'-monophosphate dehydrogenase 2 (IMPDH2). [14]
Thioguanine DM7NKEV Approved Thioguanine increases the expression of Inosine-5'-monophosphate dehydrogenase 2 (IMPDH2). [14]
Resveratrol DM3RWXL Phase 3 Resveratrol increases the expression of Inosine-5'-monophosphate dehydrogenase 2 (IMPDH2). [18]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of Inosine-5'-monophosphate dehydrogenase 2 (IMPDH2). [18]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Inosine-5'-monophosphate dehydrogenase 2 (IMPDH2). [20]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the expression of Inosine-5'-monophosphate dehydrogenase 2 (IMPDH2). [21]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Inosine-5'-monophosphate dehydrogenase 2 (IMPDH2). [18]
chloropicrin DMSGBQA Investigative chloropicrin increases the expression of Inosine-5'-monophosphate dehydrogenase 2 (IMPDH2). [22]
------------------------------------------------------------------------------------
⏷ Show the Full List of 24 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
3 Identification of potential biomarkers of hepatitis B-induced acute liver failure using hepatic cells derived from human skin precursors. Toxicol In Vitro. 2015 Sep;29(6):1231-9. doi: 10.1016/j.tiv.2014.10.012. Epub 2014 Oct 24.
4 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
5 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
6 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
7 Multifaceted preventive effects of single agent quercetin on a human prostate adenocarcinoma cell line (PC-3): implications for nutritional transcriptomics and multi-target therapy. Med Oncol. 2011 Dec;28(4):1395-404. doi: 10.1007/s12032-010-9603-3. Epub 2010 Jul 2.
8 Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells. Toxicol Appl Pharmacol. 2012 Jun 1;261(2):204-16.
9 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
10 The contribution of methotrexate exposure and host factors on transcriptional variance in human liver. Toxicol Sci. 2007 Jun;97(2):582-94.
11 THC exposure of human iPSC neurons impacts genes associated with neuropsychiatric disorders. Transl Psychiatry. 2018 Apr 25;8(1):89. doi: 10.1038/s41398-018-0137-3.
12 Expression profiling of nucleotide metabolism-related genes in human breast cancer cells after treatment with 5-fluorouracil. Cancer Invest. 2009 Jun;27(5):561-7.
13 Identification of biomarkers and outcomes of endocrine disruption in human ovarian cortex using In Vitro Models. Toxicology. 2023 Feb;485:153425. doi: 10.1016/j.tox.2023.153425. Epub 2023 Jan 5.
14 Petit E, Langouet S, Akhdar H, Nicolas-Nicolaz C, Guillouzo A, Morel F. Differential toxic effects of azathioprine, 6-mercaptopurine and 6-thioguanine on human hepatocytes. Toxicol In Vitro. 2008;22(3):632-642. [PMID: 18222062]
15 CXCL14 downregulation in human keratinocytes is a potential biomarker for a novel in vitro skin sensitization test. Toxicol Appl Pharmacol. 2020 Jan 1;386:114828. doi: 10.1016/j.taap.2019.114828. Epub 2019 Nov 14.
16 Gene expression profiling of early primary biliary cirrhosis: possible insights into the mechanism of action of ursodeoxycholic acid. Liver Int. 2008 Aug;28(7):997-1010. doi: 10.1111/j.1478-3231.2008.01744.x. Epub 2008 Apr 15.
17 Proteomic profile of aminoglutethimide-induced apoptosis in HL-60 cells: role of myeloperoxidase and arylamine free radicals. Chem Biol Interact. 2015 Sep 5;239:129-38.
18 Gene expression profiling in Ishikawa cells: a fingerprint for estrogen active compounds. Toxicol Appl Pharmacol. 2009 Apr 1;236(1):85-96.
19 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
20 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
21 Comparative proteomics reveals concordant and discordant biochemical effects of caffeine versus epigallocatechin-3-gallate in human endothelial cells. Toxicol Appl Pharmacol. 2019 Sep 1;378:114621. doi: 10.1016/j.taap.2019.114621. Epub 2019 Jun 10.
22 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.