General Information of Drug Off-Target (DOT) (ID: OTQ8QW2L)

DOT Name Tyrosine-protein kinase JAK3 (JAK3)
Synonyms EC 2.7.10.2; Janus kinase 3; JAK-3; Leukocyte janus kinase; L-JAK
Gene Name JAK3
Related Disease
T-B+ severe combined immunodeficiency due to JAK3 deficiency ( )
UniProt ID
JAK3_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1YVJ ; 3LXK ; 3LXL ; 3PJC ; 3ZC6 ; 3ZEP ; 4HVD ; 4HVG ; 4HVH ; 4HVI ; 4I6Q ; 4QPS ; 4QT1 ; 4RIO ; 4V0G ; 4Z16 ; 5LWM ; 5LWN ; 5TOZ ; 5TTS ; 5TTU ; 5TTV ; 5VO6 ; 5W86 ; 5WFJ ; 6AAK ; 6DA4 ; 6DB3 ; 6DB4 ; 6DUD ; 6GL9 ; 6GLA ; 6GLB ; 6HZV ; 6NY4 ; 7APF ; 7APG ; 7C3N ; 7Q6H ; 7UYV ; 8EXM
EC Number
2.7.10.2
Pfam ID
PF18379 ; PF18377 ; PF17887 ; PF07714
Sequence
MAPPSEETPLIPQRSCSLLSTEAGALHVLLPARGPGPPQRLSFSFGDHLAEDLCVQAAKA
SGILPVYHSLFALATEDLSCWFPPSHIFSVEDASTQVLLYRIRFYFPNWFGLEKCHRFGL
RKDLASAILDLPVLEHLFAQHRSDLVSGRLPVGLSLKEQGECLSLAVLDLARMAREQAQR
PGELLKTVSYKACLPPSLRDLIQGLSFVTRRRIRRTVRRALRRVAACQADRHSLMAKYIM
DLERLDPAGAAETFHVGLPGALGGHDGLGLLRVAGDGGIAWTQGEQEVLQPFCDFPEIVD
ISIKQAPRVGPAGEHRLVTVTRTDNQILEAEFPGLPEALSFVALVDGYFRLTTDSQHFFC
KEVAPPRLLEEVAEQCHGPITLDFAINKLKTGGSRPGSYVLRRSPQDFDSFLLTVCVQNP
LGPDYKGCLIRRSPTGTFLLVGLSRPHSSLRELLATCWDGGLHVDGVAVTLTSCCIPRPK
EKSNLIVVQRGHSPPTSSLVQPQSQYQLSQMTFHKIPADSLEWHENLGHGSFTKIYRGCR
HEVVDGEARKTEVLLKVMDAKHKNCMESFLEAASLMSQVSYRHLVLLHGVCMAGDSTMVQ
EFVHLGAIDMYLRKRGHLVPASWKLQVVKQLAYALNYLEDKGLPHGNVSARKVLLAREGA
DGSPPFIKLSDPGVSPAVLSLEMLTDRIPWVAPECLREAQTLSLEADKWGFGATVWEVFS
GVTMPISALDPAKKLQFYEDRQQLPAPKWTELALLIQQCMAYEPVQRPSFRAVIRDLNSL
ISSDYELLSDPTPGALAPRDGLWNGAQLYACQDPTIFEERHLKYISQLGKGNFGSVELCR
YDPLGDNTGALVAVKQLQHSGPDQQRDFQREIQILKALHSDFIVKYRGVSYGPGRQSLRL
VMEYLPSGCLRDFLQRHRARLDASRLLLYSSQICKGMEYLGSRRCVHRDLAARNILVESE
AHVKIADFGLAKLLPLDKDYYVVREPGQSPIFWYAPESLSDNIFSRQSDVWSFGVVLYEL
FTYCDKSCSPSAEFLRMMGCERDVPALCRLLELLEEGQRLPAPPACPAEVHELMKLCWAP
SPQDRPSFSALGPQLDMLWSGSRGCETHAFTAHPEGKHHSLSFS
Function
Non-receptor tyrosine kinase involved in various processes such as cell growth, development, or differentiation. Mediates essential signaling events in both innate and adaptive immunity and plays a crucial role in hematopoiesis during T-cells development. In the cytoplasm, plays a pivotal role in signal transduction via its association with type I receptors sharing the common subunit gamma such as IL2R, IL4R, IL7R, IL9R, IL15R and IL21R. Following ligand binding to cell surface receptors, phosphorylates specific tyrosine residues on the cytoplasmic tails of the receptor, creating docking sites for STATs proteins. Subsequently, phosphorylates the STATs proteins once they are recruited to the receptor. Phosphorylated STATs then form homodimer or heterodimers and translocate to the nucleus to activate gene transcription. For example, upon IL2R activation by IL2, JAK1 and JAK3 molecules bind to IL2R beta (IL2RB) and gamma chain (IL2RG) subunits inducing the tyrosine phosphorylation of both receptor subunits on their cytoplasmic domain. Then, STAT5A and STAT5B are recruited, phosphorylated and activated by JAK1 and JAK3. Once activated, dimerized STAT5 translocates to the nucleus and promotes the transcription of specific target genes in a cytokine-specific fashion.
Tissue Specificity
In NK cells and an NK-like cell line but not in resting T-cells or in other tissues. The S-form is more commonly seen in hematopoietic lines, whereas the B-form is detected in cells both of hematopoietic and epithelial origins.
KEGG Pathway
Chemokine sig.ling pathway (hsa04062 )
PI3K-Akt sig.ling pathway (hsa04151 )
Necroptosis (hsa04217 )
Sig.ling pathways regulating pluripotency of stem cells (hsa04550 )
JAK-STAT sig.ling pathway (hsa04630 )
Th1 and Th2 cell differentiation (hsa04658 )
Th17 cell differentiation (hsa04659 )
Hepatitis B (hsa05161 )
Measles (hsa05162 )
Human T-cell leukemia virus 1 infection (hsa05166 )
Epstein-Barr virus infection (hsa05169 )
Pathways in cancer (hsa05200 )
Viral carcinogenesis (hsa05203 )
Non-small cell lung cancer (hsa05223 )
Primary immunodeficiency (hsa05340 )
Reactome Pathway
Signaling by ALK (R-HSA-201556 )
RAF/MAP kinase cascade (R-HSA-5673001 )
Interleukin-4 and Interleukin-13 signaling (R-HSA-6785807 )
Interleukin-20 family signaling (R-HSA-8854691 )
Interleukin-15 signaling (R-HSA-8983432 )
Interleukin-9 signaling (R-HSA-8985947 )
Interleukin-2 signaling (R-HSA-9020558 )
Interleukin-21 signaling (R-HSA-9020958 )
Interleukin receptor SHC signaling (R-HSA-912526 )
Potential therapeutics for SARS (R-HSA-9679191 )
Interleukin-7 signaling (R-HSA-1266695 )

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
T-B+ severe combined immunodeficiency due to JAK3 deficiency DISNT79U Definitive Autosomal recessive [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Afimoxifene DMFORDT Phase 2 Tyrosine-protein kinase JAK3 (JAK3) decreases the response to substance of Afimoxifene. [19]
------------------------------------------------------------------------------------
13 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Tyrosine-protein kinase JAK3 (JAK3). [2]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Tyrosine-protein kinase JAK3 (JAK3). [3]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Tyrosine-protein kinase JAK3 (JAK3). [5]
Methotrexate DM2TEOL Approved Methotrexate decreases the expression of Tyrosine-protein kinase JAK3 (JAK3). [7]
Decitabine DMQL8XJ Approved Decitabine decreases the expression of Tyrosine-protein kinase JAK3 (JAK3). [5]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of Tyrosine-protein kinase JAK3 (JAK3). [8]
Niclosamide DMJAGXQ Approved Niclosamide increases the expression of Tyrosine-protein kinase JAK3 (JAK3). [10]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol increases the expression of Tyrosine-protein kinase JAK3 (JAK3). [11]
Ceritinib DMB920Z Approved Ceritinib decreases the expression of Tyrosine-protein kinase JAK3 (JAK3). [12]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Tyrosine-protein kinase JAK3 (JAK3). [13]
Epigallocatechin gallate DMCGWBJ Phase 3 Epigallocatechin gallate decreases the expression of Tyrosine-protein kinase JAK3 (JAK3). [14]
Curcumin DMQPH29 Phase 3 Curcumin decreases the activity of Tyrosine-protein kinase JAK3 (JAK3). [15]
PMID25656651-Compound-5 DMAI95U Patented PMID25656651-Compound-5 decreases the activity of Tyrosine-protein kinase JAK3 (JAK3). [18]
------------------------------------------------------------------------------------
⏷ Show the Full List of 13 Drug(s)
5 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Tyrosine-protein kinase JAK3 (JAK3). [4]
Triclosan DMZUR4N Approved Triclosan increases the methylation of Tyrosine-protein kinase JAK3 (JAK3). [6]
Menadione DMSJDTY Approved Menadione increases the phosphorylation of Tyrosine-protein kinase JAK3 (JAK3). [9]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Tyrosine-protein kinase JAK3 (JAK3). [16]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Tyrosine-protein kinase JAK3 (JAK3). [17]
------------------------------------------------------------------------------------

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
3 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
4 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
5 [Effect of arsenic trioxide and 5-aza-2'-deoxycytidine on SHP-1, JAK3, TYK2 gene expression in K562 cells]. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2014 Apr;22(2):323-8. doi: 10.7534/j.issn.1009-2137.2014.02.011.
6 Pregnancy exposure to synthetic phenols and placental DNA methylation - An epigenome-wide association study in male infants from the EDEN cohort. Environ Pollut. 2021 Dec 1;290:118024. doi: 10.1016/j.envpol.2021.118024. Epub 2021 Aug 21.
7 The contribution of methotrexate exposure and host factors on transcriptional variance in human liver. Toxicol Sci. 2007 Jun;97(2):582-94.
8 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
9 Tyrosine phosphorylation of HuR by JAK3 triggers dissociation and degradation of HuR target mRNAs. Nucleic Acids Res. 2014 Jan;42(2):1196-208. doi: 10.1093/nar/gkt903. Epub 2013 Oct 7.
10 Mitochondrial Uncoupling Induces Epigenome Remodeling and Promotes Differentiation in Neuroblastoma. Cancer Res. 2023 Jan 18;83(2):181-194. doi: 10.1158/0008-5472.CAN-22-1029.
11 Analysis of gene expression induced by diethylstilbestrol (DES) in human primitive Mullerian duct cells using microarray. Cancer Lett. 2005 Apr 8;220(2):197-210.
12 1-(4-((5-chloro-4-((2-(isopropylsulfonyl)phenyl)amino)pyrimidin-2-yl)amino)-3-methoxyphenyl)-3-(2-(dimethylamino)ethyl)imidazolidin-2-one (ZX-42) inhibits cell proliferation and induces apoptosis via inhibiting ALK and its downstream pathways in Karpas299 cells. Toxicol Appl Pharmacol. 2022 Sep 1;450:116156. doi: 10.1016/j.taap.2022.116156. Epub 2022 Jul 6.
13 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
14 EGCG enhances the therapeutic potential of gemcitabine and CP690550 by inhibiting STAT3 signaling pathway in human pancreatic cancer. PLoS One. 2012;7(2):e31067. doi: 10.1371/journal.pone.0031067. Epub 2012 Feb 13.
15 Jak3- and JNK-dependent vascular endothelial growth factor expression in cutaneous T-cell lymphoma. Leukemia. 2006 Oct;20(10):1759-66. doi: 10.1038/sj.leu.2404350. Epub 2006 Aug 17.
16 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
17 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
18 AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell. 2009 Nov 6;16(5):401-12. doi: 10.1016/j.ccr.2009.09.028.
19 High-throughput ectopic expression screen for tamoxifen resistance identifies an atypical kinase that blocks autophagy. Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):2058-63.