General Information of Drug Off-Target (DOT) (ID: OTQMCSXT)

DOT Name Iron-sulfur cluster transfer protein NUBPL (NUBPL)
Synonyms IND1 homolog; Nucleotide-binding protein-like; huInd1
Gene Name NUBPL
Related Disease
Mitochondrial complex I deficiency, nuclear type 1 ( )
Alzheimer disease ( )
Cardiac failure ( )
Colorectal carcinoma ( )
Dystonia ( )
Metastatic malignant neoplasm ( )
Mitochondrial complex 1 deficiency, nuclear type 21 ( )
Mitochondrial disease ( )
Leigh syndrome ( )
Movement disorder ( )
Mitochondrial complex I deficiency ( )
UniProt ID
NUBPL_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF10609
Sequence
MGIWQRLLLFGGVSLRAGGGATAPLGGSRAMVCGRQLSGAGSETLKQRRTQIMSRGLPKQ
KPIEGVKQVIVVASGKGGVGKSTTAVNLALALAANDSSKAIGLLDVDVYGPSVPKMMNLK
GNPELSQSNLMRPLLNYGIACMSMGFLVEESEPVVWRGLMVMSAIEKLLRQVDWGQLDYL
VVDMPPGTGDVQLSVSQNIPITGAVIVSTPQDIALMDAHKGAEMFRRVHVPVLGLVQNMS
VFQCPKCKHKTHIFGADGARKLAQTLGLEVLGDIPLHLNIREASDTGQPIVFSQPESDEA
KAYLRIAVEVVRRLPSPSE
Function
Iron-sulfur cluster transfer protein involved in the assembly of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I). May deliver one or more Fe-S clusters to complex I subunits.
Tissue Specificity Highest expression in liver and kidney. expressed at significant levels in small intestine and brain (at protein level).
Reactome Pathway
Complex I biogenesis (R-HSA-6799198 )

Molecular Interaction Atlas (MIA) of This DOT

11 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Mitochondrial complex I deficiency, nuclear type 1 DISCPLX4 Definitive Autosomal recessive [1]
Alzheimer disease DISF8S70 Strong Biomarker [2]
Cardiac failure DISDC067 Strong Genetic Variation [3]
Colorectal carcinoma DIS5PYL0 Strong Altered Expression [4]
Dystonia DISJLFGW Strong Genetic Variation [5]
Metastatic malignant neoplasm DIS86UK6 Strong Biomarker [4]
Mitochondrial complex 1 deficiency, nuclear type 21 DISG204L Strong Autosomal recessive [6]
Mitochondrial disease DISKAHA3 Strong Biomarker [7]
Leigh syndrome DISWQU45 Moderate Autosomal recessive [8]
Movement disorder DISOJJ2D moderate CausalMutation [9]
Mitochondrial complex I deficiency DIS13M7V Supportive Autosomal recessive [6]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
9 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Iron-sulfur cluster transfer protein NUBPL (NUBPL). [10]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Iron-sulfur cluster transfer protein NUBPL (NUBPL). [11]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Iron-sulfur cluster transfer protein NUBPL (NUBPL). [12]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Iron-sulfur cluster transfer protein NUBPL (NUBPL). [13]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Iron-sulfur cluster transfer protein NUBPL (NUBPL). [14]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Iron-sulfur cluster transfer protein NUBPL (NUBPL). [16]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Iron-sulfur cluster transfer protein NUBPL (NUBPL). [17]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Iron-sulfur cluster transfer protein NUBPL (NUBPL). [19]
GALLICACID DM6Y3A0 Investigative GALLICACID increases the expression of Iron-sulfur cluster transfer protein NUBPL (NUBPL). [20]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Iron-sulfur cluster transfer protein NUBPL (NUBPL). [15]
Fulvestrant DM0YZC6 Approved Fulvestrant increases the methylation of Iron-sulfur cluster transfer protein NUBPL (NUBPL). [18]
------------------------------------------------------------------------------------

References

1 Flexible and scalable diagnostic filtering of genomic variants using G2P with Ensembl VEP. Nat Commun. 2019 May 30;10(1):2373. doi: 10.1038/s41467-019-10016-3.
2 3-(Benzyloxy)-1-(5-[(18)F]fluoropentyl)-5-nitro-1H-indazole: a PET radiotracer to measure acetylcholinesterase in brain.Future Med Chem. 2017 Jun;9(10):983-994. doi: 10.4155/fmc-2017-0023. Epub 2017 Jun 20.
3 Genetics of heart rate in heart failure patients (GenHRate).Hum Genomics. 2019 May 21;13(1):22. doi: 10.1186/s40246-019-0206-6.
4 NUBPL, a novel metastasis-related gene, promotes colorectal carcinoma cell motility by inducing epithelial-mesenchymal transition.Cancer Sci. 2017 Jun;108(6):1169-1176. doi: 10.1111/cas.13243. Epub 2017 Jun 14.
5 Mitochondrial complex I NUBPL mutations cause combined dystonia with bilateral striatal necrosis and cerebellar atrophy.Eur J Neurol. 2019 Sep;26(9):1240-1243. doi: 10.1111/ene.13956. Epub 2019 Apr 20.
6 High-throughput, pooled sequencing identifies mutations in NUBPL and FOXRED1 in human complex I deficiency. Nat Genet. 2010 Oct;42(10):851-8. doi: 10.1038/ng.659. Epub 2010 Sep 5.
7 Advantages and pitfalls of an extended gene panel for investigating complex neurometabolic phenotypes.Brain. 2016 Nov 1;139(11):2844-2854. doi: 10.1093/brain/aww221.
8 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
9 NUBPL mutations in patients with complex I deficiency and a distinct MRI pattern.Neurology. 2013 Apr 23;80(17):1577-83. doi: 10.1212/WNL.0b013e31828f1914. Epub 2013 Apr 3.
10 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
11 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
12 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
13 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
14 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
15 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
16 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
17 Minimal peroxide exposure of neuronal cells induces multifaceted adaptive responses. PLoS One. 2010 Dec 17;5(12):e14352. doi: 10.1371/journal.pone.0014352.
18 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
19 Transcriptional signature of human macrophages exposed to the environmental contaminant benzo(a)pyrene. Toxicol Sci. 2010 Apr;114(2):247-59.
20 Gene expression profile analysis of gallic acid-induced cell death process. Sci Rep. 2021 Aug 18;11(1):16743. doi: 10.1038/s41598-021-96174-1.