General Information of Drug Off-Target (DOT) (ID: OTR6G4II)

DOT Name Cleavage stimulation factor subunit 2 (CSTF2)
Synonyms CF-1 64 kDa subunit; Cleavage stimulation factor 64 kDa subunit; CSTF 64 kDa subunit; CstF-64
Gene Name CSTF2
Related Disease
Advanced cancer ( )
Bladder cancer ( )
Lung cancer ( )
Lung carcinoma ( )
Multiple sclerosis ( )
Non-small-cell lung cancer ( )
Transitional cell carcinoma ( )
Urothelial carcinoma ( )
Enterovirus infection ( )
UniProt ID
CSTF2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1P1T; 2J8P; 6Q2I; 6TZE
Pfam ID
PF14327 ; PF14304 ; PF00076
Sequence
MAGLTVRDPAVDRSLRSVFVGNIPYEATEEQLKDIFSEVGPVVSFRLVYDRETGKPKGYG
FCEYQDQETALSAMRNLNGREFSGRALRVDNAASEKNKEELKSLGTGAPVIESPYGETIS
PEDAPESISKAVASLPPEQMFELMKQMKLCVQNSPQEARNMLLQNPQLAYALLQAQVVMR
IVDPEIALKILHRQTNIPTLIAGNPQPVHGAGPGSGSNVSMNQQNPQAPQAQSLGGMHVN
GAPPLMQASMQGGVPAPGQMPAAVTGPGPGSLAPGGGMQAQVGMPGSGPVSMERGQVPMQ
DPRAAMQRGSLPANVPTPRGLLGDAPNDPRGGTLLSVTGEVEPRGYLGPPHQGPPMHHVP
GHESRGPPPHELRGGPLPEPRPLMAEPRGPMLDQRGPPLDGRGGRDPRGIDARGMEARAM
EARGLDARGLEARAMEARAMEARAMEARAMEARAMEVRGMEARGMDTRGPVPGPRGPIPS
GMQGPSPINMGAVVPQGSRQVPVMQGTGMQGASIQGGSQPGGFSPGQNQVTPQDHEKAAL
IMQVLQLTADQIAMLPPEQRQSILILKEQIQKSTGAP
Function One of the multiple factors required for polyadenylation and 3'-end cleavage of mammalian pre-mRNAs. This subunit is directly involved in the binding to pre-mRNAs.
KEGG Pathway
mR. surveillance pathway (hsa03015 )
Reactome Pathway
mRNA 3'-end processing (R-HSA-72187 )
Processing of Capped Intron-Containing Pre-mRNA (R-HSA-72203 )
RNA Polymerase II Transcription Termination (R-HSA-73856 )
Processing of Intronless Pre-mRNAs (R-HSA-77595 )
tRNA processing in the nucleus (R-HSA-6784531 )

Molecular Interaction Atlas (MIA) of This DOT

9 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Advanced cancer DISAT1Z9 Strong Biomarker [1]
Bladder cancer DISUHNM0 Strong Biomarker [2]
Lung cancer DISCM4YA Strong Altered Expression [3]
Lung carcinoma DISTR26C Strong Altered Expression [3]
Multiple sclerosis DISB2WZI Strong Biomarker [4]
Non-small-cell lung cancer DIS5Y6R9 Strong Biomarker [1]
Transitional cell carcinoma DISWVVDR Strong Biomarker [2]
Urothelial carcinoma DISRTNTN Strong Biomarker [2]
Enterovirus infection DISH2UDP Limited Biomarker [5]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
5 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Cleavage stimulation factor subunit 2 (CSTF2). [6]
Arsenic DMTL2Y1 Approved Arsenic increases the methylation of Cleavage stimulation factor subunit 2 (CSTF2). [12]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Cleavage stimulation factor subunit 2 (CSTF2). [18]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Cleavage stimulation factor subunit 2 (CSTF2). [19]
Coumarin DM0N8ZM Investigative Coumarin increases the phosphorylation of Cleavage stimulation factor subunit 2 (CSTF2). [19]
------------------------------------------------------------------------------------
16 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Cleavage stimulation factor subunit 2 (CSTF2). [7]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Cleavage stimulation factor subunit 2 (CSTF2). [8]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Cleavage stimulation factor subunit 2 (CSTF2). [9]
Doxorubicin DMVP5YE Approved Doxorubicin affects the expression of Cleavage stimulation factor subunit 2 (CSTF2). [10]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Cleavage stimulation factor subunit 2 (CSTF2). [11]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Cleavage stimulation factor subunit 2 (CSTF2). [13]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Cleavage stimulation factor subunit 2 (CSTF2). [8]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Cleavage stimulation factor subunit 2 (CSTF2). [14]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Cleavage stimulation factor subunit 2 (CSTF2). [15]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Cleavage stimulation factor subunit 2 (CSTF2). [16]
Diclofenac DMPIHLS Approved Diclofenac affects the expression of Cleavage stimulation factor subunit 2 (CSTF2). [16]
Clozapine DMFC71L Approved Clozapine decreases the expression of Cleavage stimulation factor subunit 2 (CSTF2). [17]
Benzatropine DMF7EXL Approved Benzatropine decreases the expression of Cleavage stimulation factor subunit 2 (CSTF2). [17]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN decreases the expression of Cleavage stimulation factor subunit 2 (CSTF2). [20]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Cleavage stimulation factor subunit 2 (CSTF2). [21]
Coumestrol DM40TBU Investigative Coumestrol increases the expression of Cleavage stimulation factor subunit 2 (CSTF2). [22]
------------------------------------------------------------------------------------
⏷ Show the Full List of 16 Drug(s)

References

1 Genome-wide profiling reveals alternative polyadenylation of mRNA in human non-small cell lung cancer.J Transl Med. 2019 Aug 7;17(1):257. doi: 10.1186/s12967-019-1986-0.
2 CSTF2-Induced Shortening of the RAC1 3'UTR Promotes the Pathogenesis of Urothelial Carcinoma of the Bladder.Cancer Res. 2018 Oct 15;78(20):5848-5862. doi: 10.1158/0008-5472.CAN-18-0822. Epub 2018 Aug 24.
3 Characterization of a cleavage stimulation factor, 3' pre-RNA, subunit 2, 64 kDa (CSTF2) as a therapeutic target for lung cancer.Clin Cancer Res. 2011 Sep 15;17(18):5889-900. doi: 10.1158/1078-0432.CCR-11-0240. Epub 2011 Aug 3.
4 A Novel Regulatory Function of Long Non-coding RNAs at Different Levels of Gene Expression in Multiple Sclerosis.J Mol Neurosci. 2019 Mar;67(3):434-440. doi: 10.1007/s12031-018-1248-2. Epub 2019 Jan 4.
5 Enterovirus 71 3C protease cleaves a novel target CstF-64 and inhibits cellular polyadenylation.PLoS Pathog. 2009 Sep;5(9):e1000593. doi: 10.1371/journal.ppat.1000593. Epub 2009 Sep 25.
6 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
7 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
8 Systems analysis of transcriptome and proteome in retinoic acid/arsenic trioxide-induced cell differentiation/apoptosis of promyelocytic leukemia. Proc Natl Acad Sci U S A. 2005 May 24;102(21):7653-8.
9 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
10 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
11 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
12 Epigenetic changes in individuals with arsenicosis. Chem Res Toxicol. 2011 Feb 18;24(2):165-7. doi: 10.1021/tx1004419. Epub 2011 Feb 4.
13 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
14 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
15 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
16 Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNF-mediated hepatotoxicity. Toxicol Sci. 2014 Jul;140(1):144-59. doi: 10.1093/toxsci/kfu072. Epub 2014 Apr 20.
17 Cannabidiol Displays Proteomic Similarities to Antipsychotics in Cuprizone-Exposed Human Oligodendrocytic Cell Line MO3.13. Front Mol Neurosci. 2021 May 28;14:673144. doi: 10.3389/fnmol.2021.673144. eCollection 2021.
18 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
19 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
20 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
21 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
22 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.