General Information of Drug Off-Target (DOT) (ID: OTRD9AUH)

DOT Name Protein FAM222A (FAM222A)
Gene Name FAM222A
Related Disease
Major depressive disorder ( )
UniProt ID
F222A_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF15258
Sequence
MLACLQRTQNAPGQHLACPSKSLELRKCEAVASAMHSSRYPSPAELDAYAEKVANSPLSI
KIFPTNIRVPQHKHLSRTVNGYDTSGQRYSPYPQHTAGYQGLLAIVKAAVSSSSTAAPAG
PAKSVLKSAEGKRTKLSPAAVQVGIAPYPVPSTLGPLAYPKPPEAPAPPPGLPAAATAAS
VIPLPGRGLPLPPSNLPSIHSLLYQLNQQCQAPGAAPPACQGMAIPHPSPAKHGPVPSFP
SMAYSAAAGLPDCRKGTELGQGATQALTLAGAAKPAGYADSGLDYLLWPQKPPPPPPQPL
RAYSGSTVASKSPEACGGRAYERASGSPLNCGVGLPTSFTVGQYFAAPWNSVLVTPTSDC
YNPAAAVVVTELGPGAARELAGPPADALSGLPSKSVCNTSVLSSSLQSLEYLINDIRPPC
IKEQMLGKGYETVAVPRLLDHQHAHIRLPVYR

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Major depressive disorder DIS4CL3X Strong Genetic Variation [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Protein FAM222A (FAM222A). [2]
------------------------------------------------------------------------------------
15 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Protein FAM222A (FAM222A). [3]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Protein FAM222A (FAM222A). [4]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Protein FAM222A (FAM222A). [5]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Protein FAM222A (FAM222A). [6]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Protein FAM222A (FAM222A). [7]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Protein FAM222A (FAM222A). [8]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Protein FAM222A (FAM222A). [9]
Triclosan DMZUR4N Approved Triclosan decreases the expression of Protein FAM222A (FAM222A). [10]
Fenofibrate DMFKXDY Approved Fenofibrate increases the expression of Protein FAM222A (FAM222A). [11]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Protein FAM222A (FAM222A). [12]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of Protein FAM222A (FAM222A). [13]
Belinostat DM6OC53 Phase 2 Belinostat decreases the expression of Protein FAM222A (FAM222A). [13]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Protein FAM222A (FAM222A). [14]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 increases the expression of Protein FAM222A (FAM222A). [15]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Protein FAM222A (FAM222A). [16]
------------------------------------------------------------------------------------
⏷ Show the Full List of 15 Drug(s)

References

1 GWAS and systems biology analysis of depressive symptoms among smokers from the COPDGene cohort.J Affect Disord. 2019 Jan 15;243:16-22. doi: 10.1016/j.jad.2018.09.003. Epub 2018 Sep 7.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
4 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
5 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
6 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
7 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
8 17-Estradiol Activates HSF1 via MAPK Signaling in ER-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533. doi: 10.3390/cancers11101533.
9 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
10 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
11 Transcriptomic analysis of untreated and drug-treated differentiated HepaRG cells over a 2-week period. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):27-35.
12 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
13 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
14 New insights into BaP-induced toxicity: role of major metabolites in transcriptomics and contribution to hepatocarcinogenesis. Arch Toxicol. 2016 Jun;90(6):1449-58.
15 CCAT1 is an enhancer-templated RNA that predicts BET sensitivity in colorectal cancer. J Clin Invest. 2016 Feb;126(2):639-52.
16 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.