General Information of Drug Off-Target (DOT) (ID: OTT30ZON)

DOT Name Synaptosomal-associated protein 29 (SNAP29)
Synonyms SNAP-29; Soluble 29 kDa NSF attachment protein; Vesicle-membrane fusion protein SNAP-29
Gene Name SNAP29
Related Disease
Retinitis pigmentosa ( )
Spinocerebellar ataxia type 3 ( )
CEDNIK syndrome ( )
Epithelial ovarian cancer ( )
Hepatitis B virus infection ( )
Neurocutaneous syndrome ( )
Non-syndromic ichthyosis ( )
Obesity ( )
Ovarian cancer ( )
Ovarian neoplasm ( )
Palmoplantar keratosis ( )
Sturge-Weber syndrome ( )
Velocardiofacial syndrome ( )
Isolated congenital microcephaly ( )
Bacterial infection ( )
Schizophrenia ( )
UniProt ID
SNP29_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
4WY4; 7BV6
Sequence
MSAYPKSYNPFDDDGEDEGARPAPWRDARDLPDGPDAPADRQQYLRQEVLRRAEATAAST
SRSLALMYESEKVGVASSEELARQRGVLERTEKMVDKMDQDLKISQKHINSIKSVFGGLV
NYFKSKPVETPPEQNGTLTSQPNNRLKEAISTSKEQEAKYQASHPNLRKLDDTDPVPRGA
GSAMSTDAYPKNPHLRAYHQKIDSNLDELSMGLGRLKDIALGMQTEIEEQDDILDRLTTK
VDKLDVNIKSTERKVRQL
Function
SNAREs, soluble N-ethylmaleimide-sensitive factor-attachment protein receptors, are essential proteins for fusion of cellular membranes. SNAREs localized on opposing membranes assemble to form a trans-SNARE complex, an extended, parallel four alpha-helical bundle that drives membrane fusion. SNAP29 is a SNARE involved in autophagy through the direct control of autophagosome membrane fusion with the lysososome membrane. Also plays a role in ciliogenesis by regulating membrane fusions.
Tissue Specificity Found in brain, heart, kidney, liver, lung, placenta, skeletal muscle, spleen and pancreas.
KEGG Pathway
S.RE interactions in vesicular transport (hsa04130 )
Autophagy - animal (hsa04140 )
Reactome Pathway
Intra-Golgi traffic (R-HSA-6811438 )
Neutrophil degranulation (R-HSA-6798695 )

Molecular Interaction Atlas (MIA) of This DOT

16 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Retinitis pigmentosa DISCGPY8 Definitive Altered Expression [1]
Spinocerebellar ataxia type 3 DISQBQID Definitive Biomarker [1]
CEDNIK syndrome DIS8AB7V Strong Autosomal recessive [2]
Epithelial ovarian cancer DIS56MH2 Strong Biomarker [3]
Hepatitis B virus infection DISLQ2XY Strong Biomarker [4]
Neurocutaneous syndrome DISNC82H Strong Genetic Variation [5]
Non-syndromic ichthyosis DISZ9QBQ Strong Genetic Variation [6]
Obesity DIS47Y1K Strong Biomarker [7]
Ovarian cancer DISZJHAP Strong Biomarker [3]
Ovarian neoplasm DISEAFTY Strong Biomarker [3]
Palmoplantar keratosis DISYQGFB Strong Genetic Variation [5]
Sturge-Weber syndrome DISL0WMD Strong Genetic Variation [5]
Velocardiofacial syndrome DISOSBTY Strong Biomarker [8]
Isolated congenital microcephaly DISUXHZ6 moderate Biomarker [9]
Bacterial infection DIS5QJ9S Limited Biomarker [10]
Schizophrenia DISSRV2N Limited Biomarker [11]
------------------------------------------------------------------------------------
⏷ Show the Full List of 16 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
9 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Synaptosomal-associated protein 29 (SNAP29). [12]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Synaptosomal-associated protein 29 (SNAP29). [13]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Synaptosomal-associated protein 29 (SNAP29). [14]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Synaptosomal-associated protein 29 (SNAP29). [15]
Fluorouracil DMUM7HZ Approved Fluorouracil increases the expression of Synaptosomal-associated protein 29 (SNAP29). [14]
Testosterone enanthate DMB6871 Approved Testosterone enanthate affects the expression of Synaptosomal-associated protein 29 (SNAP29). [16]
Epigallocatechin gallate DMCGWBJ Phase 3 Epigallocatechin gallate increases the expression of Synaptosomal-associated protein 29 (SNAP29). [17]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Synaptosomal-associated protein 29 (SNAP29). [18]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Synaptosomal-associated protein 29 (SNAP29). [19]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 Drug(s)

References

1 Diverse mechanisms of autophagy dysregulation and their therapeutic implications: does the shoe fit?.Autophagy. 2019 Feb;15(2):368-371. doi: 10.1080/15548627.2018.1509609. Epub 2018 Sep 13.
2 The Gene Curation Coalition: A global effort to harmonize gene-disease evidence resources. Genet Med. 2022 Aug;24(8):1732-1742. doi: 10.1016/j.gim.2022.04.017. Epub 2022 May 4.
3 Down-regulation of OGT promotes cisplatin resistance by inducing autophagy in ovarian cancer.Theranostics. 2018 Oct 6;8(19):5200-5212. doi: 10.7150/thno.27806. eCollection 2018.
4 Synaptosomal-associated protein 29 is required for the autophagic degradation of hepatitis B virus.FASEB J. 2019 May;33(5):6023-6034. doi: 10.1096/fj.201801995RR. Epub 2019 Feb 11.
5 A mutation in SNAP29, coding for a SNARE protein involved in intracellular trafficking, causes a novel neurocutaneous syndrome characterized by cerebral dysgenesis, neuropathy, ichthyosis, and palmoplantar keratoderma. Am J Hum Genet. 2005 Aug;77(2):242-51. doi: 10.1086/432556. Epub 2005 Jun 20.
6 CEDNIK syndrome results from loss-of-function mutations in SNAP29. Br J Dermatol. 2011 Mar;164(3):610-6. doi: 10.1111/j.1365-2133.2010.10133.x. Epub 2011 Feb 17.
7 Identification of genetic loci associated with different responses to high-fat diet-induced obesity in C57BL/6N and C57BL/6J substrains.Physiol Genomics. 2014 Jun 1;46(11):377-84. doi: 10.1152/physiolgenomics.00014.2014. Epub 2014 Apr 1.
8 Polymorphism in SNAP29 gene promoter region associated with schizophrenia.Mol Psychiatry. 2001 Mar;6(2):193-201. doi: 10.1038/sj.mp.4000825.
9 A genetic model of CEDNIK syndrome in zebrafish highlights the role of the SNARE protein Snap29 in neuromotor and epidermal development.Sci Rep. 2019 Feb 4;9(1):1211. doi: 10.1038/s41598-018-37780-4.
10 A novel function for SNAP29 (synaptosomal-associated protein of 29 kDa) in mast cell phagocytosis.PLoS One. 2012;7(11):e49886. doi: 10.1371/journal.pone.0049886. Epub 2012 Nov 21.
11 Synaptic and Gene Regulatory Mechanisms in Schizophrenia, Autism, and 22q11.2 Copy Number Variant-Mediated Risk for Neuropsychiatric Disorders.Biol Psychiatry. 2020 Jan 15;87(2):150-163. doi: 10.1016/j.biopsych.2019.06.029. Epub 2019 Jul 11.
12 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
13 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
14 Analysis of the in vitro synergistic effect of 5-fluorouracil and cisplatin on cervical carcinoma cells. Int J Gynecol Cancer. 2006 May-Jun;16(3):1321-9.
15 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
16 Transcriptional profiling of testosterone-regulated genes in the skeletal muscle of human immunodeficiency virus-infected men experiencing weight loss. J Clin Endocrinol Metab. 2007 Jul;92(7):2793-802. doi: 10.1210/jc.2006-2722. Epub 2007 Apr 17.
17 Application of the adverse outcome pathway concept for investigating developmental neurotoxicity potential of Chinese herbal medicines by using human neural progenitor cells in vitro. Cell Biol Toxicol. 2023 Feb;39(1):319-343. doi: 10.1007/s10565-022-09730-4. Epub 2022 Jun 15.
18 Isobaric tags for relative and absolute quantitation-based proteomics analysis of the effect of ginger oil on bisphenol A-induced breast cancer cell proliferation. Oncol Lett. 2021 Feb;21(2):101. doi: 10.3892/ol.2020.12362. Epub 2020 Dec 8.
19 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.