General Information of Drug Off-Target (DOT) (ID: OTTILF8T)

DOT Name Flavin-containing monooxygenase 5 (FMO5)
Synonyms FMO 5; Baeyer-Villiger monooxygenase 1; hBVMO1; EC 1.14.13.-; Dimethylaniline monooxygenase 5; EC 1.14.13.8; Dimethylaniline oxidase 5; NADPH oxidase; EC 1.6.3.1
Gene Name FMO5
Related Disease
Congenital heart disease ( )
UniProt ID
FMO5_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
1.14.13.-; 1.14.13.8; 1.6.3.1
Pfam ID
PF00743
Sequence
MTKKRIAVIGGGVSGLSSIKCCVEEGLEPVCFERTDDIGGLWRFQENPEEGRASIYKSVI
INTSKEMMCFSDYPIPDHYPNFMHNAQVLEYFRMYAKEFDLLKYIRFKTTVCSVKKQPDF
ATSGQWEVVTESEGKKEMNVFDGVMVCTGHHTNAHLPLESFPGIEKFKGQYFHSRDYKNP
EGFTGKRVIIIGIGNSGGDLAVEISQTAKQVFLSTRRGAWILNRVGDYGYPADVLFSSRL
THFIWKICGQSLANKYLEKKINQRFDHEMFGLKPKHRALSQHPTLNDDLPNRIISGLVKV
KGNVKEFTETAAIFEDGSREDDIDAVIFATGYSFDFPFLEDSVKVVKNKISLYKKVFPPN
LERPTLAIIGLIQPLGAIMPISELQGRWATQVFKGLKTLPSQSEMMAEISKAQEEIDKRY
VESQRHTIQGDYIDTMEELADLVGVRPNLLSLAFTDPKLALHLLLGPCTPIHYRVQGPGK
WDGARKAILTTDDRIRKPLMTRVVERSSSMTSTMTIGKFMLALAFFAIIIAYF
Function
Acts as a Baeyer-Villiger monooxygenase on a broad range of substrates. Catalyzes the insertion of an oxygen atom into a carbon-carbon bond adjacent to a carbonyl, which converts ketones to esters. Active on diverse carbonyl compounds, whereas soft nucleophiles are mostly non- or poorly reactive. In contrast with other forms of FMO it is non- or poorly active on 'classical' substrates such as drugs, pesticides, and dietary components containing soft nucleophilic heteroatoms (Probable). Able to oxidize drug molecules bearing a carbonyl group on an aliphatic chain, such as nabumetone and pentoxifylline. Also, in the absence of substrates, shows slow but yet significant NADPH oxidase activity. Acts as a positive modulator of cholesterol biosynthesis as well as glucose homeostasis, promoting metabolic aging via pleiotropic effects.
Tissue Specificity Expressed in fetal and adult liver.
KEGG Pathway
Taurine and hypotaurine metabolism (hsa00430 )
Drug metabolism - cytochrome P450 (hsa00982 )
Metabolic pathways (hsa01100 )

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Congenital heart disease DISQBA23 Disputed Autosomal dominant [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
23 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Flavin-containing monooxygenase 5 (FMO5). [2]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Flavin-containing monooxygenase 5 (FMO5). [3]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Flavin-containing monooxygenase 5 (FMO5). [4]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Flavin-containing monooxygenase 5 (FMO5). [5]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Flavin-containing monooxygenase 5 (FMO5). [3]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Flavin-containing monooxygenase 5 (FMO5). [6]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Flavin-containing monooxygenase 5 (FMO5). [7]
Testosterone DM7HUNW Approved Testosterone increases the expression of Flavin-containing monooxygenase 5 (FMO5). [7]
Phenobarbital DMXZOCG Approved Phenobarbital increases the expression of Flavin-containing monooxygenase 5 (FMO5). [8]
Troglitazone DM3VFPD Approved Troglitazone decreases the expression of Flavin-containing monooxygenase 5 (FMO5). [9]
Rosiglitazone DMILWZR Approved Rosiglitazone decreases the expression of Flavin-containing monooxygenase 5 (FMO5). [10]
Azathioprine DMMZSXQ Approved Azathioprine decreases the expression of Flavin-containing monooxygenase 5 (FMO5). [11]
Fenofibrate DMFKXDY Approved Fenofibrate decreases the expression of Flavin-containing monooxygenase 5 (FMO5). [10]
Penicillamine DM40EF6 Approved Penicillamine increases the expression of Flavin-containing monooxygenase 5 (FMO5). [12]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Flavin-containing monooxygenase 5 (FMO5). [13]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Flavin-containing monooxygenase 5 (FMO5). [14]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of Flavin-containing monooxygenase 5 (FMO5). [15]
Tocopherol DMBIJZ6 Phase 2 Tocopherol decreases the expression of Flavin-containing monooxygenase 5 (FMO5). [16]
Belinostat DM6OC53 Phase 2 Belinostat decreases the expression of Flavin-containing monooxygenase 5 (FMO5). [15]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Flavin-containing monooxygenase 5 (FMO5). [3]
Bisphenol A DM2ZLD7 Investigative Bisphenol A affects the expression of Flavin-containing monooxygenase 5 (FMO5). [17]
Acetaldehyde DMJFKG4 Investigative Acetaldehyde decreases the expression of Flavin-containing monooxygenase 5 (FMO5). [18]
cinnamaldehyde DMZDUXG Investigative cinnamaldehyde increases the expression of Flavin-containing monooxygenase 5 (FMO5). [19]
------------------------------------------------------------------------------------
⏷ Show the Full List of 23 Drug(s)

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
4 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
5 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
6 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
7 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
8 Xenobiotic CAR activators induce Dlk1-Dio3 locus noncoding RNA expression in mouse liver. Toxicol Sci. 2017 Aug 1;158(2):367-378.
9 Increased sensitivity for troglitazone-induced cytotoxicity using a human in vitro co-culture model. Toxicol In Vitro. 2009 Oct;23(7):1387-95.
10 Transcriptomic analysis of untreated and drug-treated differentiated HepaRG cells over a 2-week period. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):27-35.
11 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
12 D-Penicillamine targets metastatic melanoma cells with induction of the unfolded protein response (UPR) and Noxa (PMAIP1)-dependent mitochondrial apoptosis. Apoptosis. 2012 Oct;17(10):1079-94.
13 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
14 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
15 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
16 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
17 Comprehensive analysis of transcriptomic changes induced by low and high doses of bisphenol A in HepG2 spheroids in vitro and rat liver in vivo. Environ Res. 2019 Jun;173:124-134. doi: 10.1016/j.envres.2019.03.035. Epub 2019 Mar 18.
18 Transcriptome profile analysis of saturated aliphatic aldehydes reveals carbon number-specific molecules involved in pulmonary toxicity. Chem Res Toxicol. 2014 Aug 18;27(8):1362-70.
19 The cinnamon-derived Michael acceptor cinnamic aldehyde impairs melanoma cell proliferation, invasiveness, and tumor growth. Free Radic Biol Med. 2009 Jan 15;46(2):220-31.