General Information of Drug Off-Target (DOT) (ID: OTUXZGDQ)

DOT Name Transgelin-2 (TAGLN2)
Synonyms Epididymis tissue protein Li 7e; SM22-alpha homolog
Gene Name TAGLN2
UniProt ID
TAGL2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1WYM
Pfam ID
PF00402 ; PF00307
Sequence
MANRGPAYGLSREVQQKIEKQYDADLEQILIQWITTQCRKDVGRPQPGRENFQNWLKDGT
VLCELINALYPEGQAPVKKIQASTMAFKQMEQISQFLQAAERYGINTTDIFQTVDLWEGK
NMACVQRTLMNLGGLAVARDDGLFSGDPNWFPKKSKENPRNFSDNQLQEGKNVIGLQMGT
NRGASQAGMTGYGMPRQIL
Tissue Specificity Expressed in epididymis (at protein level).
Reactome Pathway
Platelet degranulation (R-HSA-114608 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Transgelin-2 (TAGLN2). [1]
------------------------------------------------------------------------------------
25 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Transgelin-2 (TAGLN2). [2]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Transgelin-2 (TAGLN2). [3]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Transgelin-2 (TAGLN2). [4]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Transgelin-2 (TAGLN2). [5]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Transgelin-2 (TAGLN2). [6]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Transgelin-2 (TAGLN2). [7]
Selenium DM25CGV Approved Selenium increases the expression of Transgelin-2 (TAGLN2). [8]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Transgelin-2 (TAGLN2). [9]
Cannabidiol DM0659E Approved Cannabidiol decreases the expression of Transgelin-2 (TAGLN2). [10]
Bortezomib DMNO38U Approved Bortezomib decreases the expression of Transgelin-2 (TAGLN2). [11]
Nicotine DMWX5CO Approved Nicotine decreases the expression of Transgelin-2 (TAGLN2). [12]
Clozapine DMFC71L Approved Clozapine decreases the expression of Transgelin-2 (TAGLN2). [10]
Benzatropine DMF7EXL Approved Benzatropine decreases the expression of Transgelin-2 (TAGLN2). [10]
Haloperidol DM96SE0 Approved Haloperidol decreases the expression of Transgelin-2 (TAGLN2). [10]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Transgelin-2 (TAGLN2). [14]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Transgelin-2 (TAGLN2). [15]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Transgelin-2 (TAGLN2). [16]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Transgelin-2 (TAGLN2). [17]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Transgelin-2 (TAGLN2). [18]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN decreases the expression of Transgelin-2 (TAGLN2). [19]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Transgelin-2 (TAGLN2). [20]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Transgelin-2 (TAGLN2). [21]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of Transgelin-2 (TAGLN2). [22]
3R14S-OCHRATOXIN A DM2KEW6 Investigative 3R14S-OCHRATOXIN A affects the expression of Transgelin-2 (TAGLN2). [23]
Manganese DMKT129 Investigative Manganese decreases the expression of Transgelin-2 (TAGLN2). [24]
------------------------------------------------------------------------------------
⏷ Show the Full List of 25 Drug(s)
1 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
Dihydroartemisinin DMBXVMZ Approved Dihydroartemisinin affects the binding of Transgelin-2 (TAGLN2). [13]
------------------------------------------------------------------------------------

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
3 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
4 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
5 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
6 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
7 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
8 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
9 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
10 Cannabidiol Displays Proteomic Similarities to Antipsychotics in Cuprizone-Exposed Human Oligodendrocytic Cell Line MO3.13. Front Mol Neurosci. 2021 May 28;14:673144. doi: 10.3389/fnmol.2021.673144. eCollection 2021.
11 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
12 Nicotinic modulation of gene expression in SH-SY5Y neuroblastoma cells. Brain Res. 2006 Oct 20;1116(1):39-49.
13 Untargeted Proteomics and Systems-Based Mechanistic Investigation of Artesunate in Human Bronchial Epithelial Cells. Chem Res Toxicol. 2015 Oct 19;28(10):1903-13. doi: 10.1021/acs.chemrestox.5b00105. Epub 2015 Sep 21.
14 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
15 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
16 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
17 Bromodomain-containing protein 4 (BRD4) regulates RNA polymerase II serine 2 phosphorylation in human CD4+ T cells. J Biol Chem. 2012 Dec 14;287(51):43137-55.
18 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
19 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
20 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
21 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
22 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
23 Lipid Rafts Disruption Increases Ochratoxin A Cytotoxicity to Hepatocytes. J Biochem Mol Toxicol. 2016 Feb;30(2):71-9. doi: 10.1002/jbt.21738. Epub 2015 Aug 25.
24 Gene expression profiling of human primary astrocytes exposed to manganese chloride indicates selective effects on several functions of the cells. Neurotoxicology. 2007 May;28(3):478-89.