General Information of Drug Off-Target (DOT) (ID: OTVMULE9)

DOT Name Transcription initiation factor TFIID subunit 3 (TAF3)
Synonyms 140 kDa TATA box-binding protein-associated factor; TBP-associated factor 3; Transcription initiation factor TFIID 140 kDa subunit; TAF(II)140; TAF140; TAFII-140; TAFII140
Gene Name TAF3
Related Disease
Arteriosclerosis ( )
Atherosclerosis ( )
UniProt ID
TAF3_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
5C13; 5WXG; 5WXH; 5XMY; 6MZD; 6MZL; 7EDX; 7EG7; 7EG8; 7EG9; 7EGA; 7EGB; 7EGC; 7EGD; 7EGE; 7EGF; 7EGI; 7EGJ; 7ENA; 7ENC; 8GXQ; 8GXS; 8WAK; 8WAL; 8WAN; 8WAO; 8WAP; 8WAQ; 8WAR; 8WAS
Pfam ID
PF07524 ; PF00628
Sequence
MCESYSRSLLRVSVAQICQALGWDSVQLSACHLLTDVLQRYLQQLGRGCHRYSELYGRTD
PILDDVGEAFQLMGVSLHELEDYIHNIEPVTFPHQIPSFPVSKNNVLQFPQPGSKDAEER
KEYIPDYLPPIVSSQEEEEEEQVPTDGGTSAEAMQVPLEEDDELEEEEIINDENFLGKRP
LDSPEAEELPAMKRPRLLSTKGDTLDVVLLEAREPLSSINTQKIPPMLSPVHVQDSTDLA
PPSPEPPMLAPVAKSQMPTAKPLETKSFTPKTKTKTSSPGQKTKSPKTAQSPAMVGSPIR
SPKTVSKEKKSPGRSKSPKSPKSPKVTTHIPQTPVRPETPNRTPSATLSEKISKETIQVK
QIQTPPDAGKLNSENQPKKAVVADKTIEASIDAVIARACAEREPDPFEFSSGSESEGDIF
TSPKRISGPECTTPKASTSANNFTKSGSTPLPLSGGTSSSDNSWTMDASIDEVVRKAKLG
TPSNMPPNFPYISSPSVSPPTPEPLHKVYEEKTKLPSSVEVKKKLKKELKTKMKKKEKQR
DREREKDKNKDKSKEKDKVKEKEKDKETGRETKYPWKEFLKEEEADPYKFKIKEFEDVDP
KVKLKDGLVRKEKEKHKDKKKDREKGKKDKDKREKEKVKDKGREDKMKAPAPPLVLPPKE
LALPLFSPATASRVPAMLPSLLPVLPEKLFEEKEKVKEKEKKKDKKEKKKKKEKEKEKKE
KEREKEKREREKREKEKEKHKHEKIKVEPVALAPSPVIPRLTLRVGAGQDKIVISKVVPA
PEAKPAPSQNRPKTPPPAPAPAPGPMLVSPAPVPLPLLAQAAAGPALLPSPGPAASGASA
KAPVRSVVTETVSTYVIRDEWGNQIWICPGCNKPDDGSPMIGCDDCDDWYHWPCVGIMTA
PPEEMQWFCPKCANKKKDKKHKKRKHRAH
Function
The TFIID basal transcription factor complex plays a major role in the initiation of RNA polymerase II (Pol II)-dependent transcription. TFIID recognizes and binds promoters with or without a TATA box via its subunit TBP, a TATA-box-binding protein, and promotes assembly of the pre-initiation complex (PIC). The TFIID complex consists of TBP and TBP-associated factors (TAFs), including TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13. The TFIID complex structure can be divided into 3 modules TFIID-A, TFIID-B, and TFIID-C. TAF3 forms the TFIID-A module together with TAF5 and TBP. Required in complex with TBPL2 for the differentiation of myoblasts into myocytes. The TAF3-TBPL2 complex replaces TFIID at specific promoters at an early stage in the differentiation process.
KEGG Pathway
Basal transcription factors (hsa03022 )
Reactome Pathway
RNA Polymerase II HIV Promoter Escape (R-HSA-167162 )
Transcription of the HIV genome (R-HSA-167172 )
RNA Polymerase II Pre-transcription Events (R-HSA-674695 )
Regulation of TP53 Activity through Phosphorylation (R-HSA-6804756 )
RNA Polymerase II Promoter Escape (R-HSA-73776 )
RNA Polymerase II Transcription Pre-Initiation And Promoter Opening (R-HSA-73779 )
RNA Polymerase II Transcription Initiation (R-HSA-75953 )
RNA Polymerase II Transcription Initiation And Promoter Clearance (R-HSA-76042 )
HIV Transcription Initiation (R-HSA-167161 )

Molecular Interaction Atlas (MIA) of This DOT

2 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Arteriosclerosis DISK5QGC Strong Biomarker [1]
Atherosclerosis DISMN9J3 Strong Biomarker [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Josamycin DMKJ8LB Approved Transcription initiation factor TFIID subunit 3 (TAF3) affects the response to substance of Josamycin. [15]
------------------------------------------------------------------------------------
12 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Transcription initiation factor TFIID subunit 3 (TAF3). [2]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Transcription initiation factor TFIID subunit 3 (TAF3). [3]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Transcription initiation factor TFIID subunit 3 (TAF3). [4]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Transcription initiation factor TFIID subunit 3 (TAF3). [5]
Quercetin DM3NC4M Approved Quercetin increases the expression of Transcription initiation factor TFIID subunit 3 (TAF3). [6]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Transcription initiation factor TFIID subunit 3 (TAF3). [7]
Fluorouracil DMUM7HZ Approved Fluorouracil affects the expression of Transcription initiation factor TFIID subunit 3 (TAF3). [8]
Hydroquinone DM6AVR4 Approved Hydroquinone decreases the expression of Transcription initiation factor TFIID subunit 3 (TAF3). [9]
Diclofenac DMPIHLS Approved Diclofenac affects the expression of Transcription initiation factor TFIID subunit 3 (TAF3). [7]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Transcription initiation factor TFIID subunit 3 (TAF3). [10]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Transcription initiation factor TFIID subunit 3 (TAF3). [12]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Transcription initiation factor TFIID subunit 3 (TAF3). [14]
------------------------------------------------------------------------------------
⏷ Show the Full List of 12 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Transcription initiation factor TFIID subunit 3 (TAF3). [11]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Transcription initiation factor TFIID subunit 3 (TAF3). [13]
------------------------------------------------------------------------------------

References

1 Silencing of CD40 invivo reduces progression of experimental atherogenesis through an NF-B/miR-125b axis and reveals new potential mediators in the pathogenesis of atherosclerosis.Atherosclerosis. 2016 Dec;255:80-89. doi: 10.1016/j.atherosclerosis.2016.11.002. Epub 2016 Nov 2.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
4 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
5 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
6 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
7 Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNF-mediated hepatotoxicity. Toxicol Sci. 2014 Jul;140(1):144-59. doi: 10.1093/toxsci/kfu072. Epub 2014 Apr 20.
8 Multi-level gene expression profiles affected by thymidylate synthase and 5-fluorouracil in colon cancer. BMC Genomics. 2006 Apr 3;7:68. doi: 10.1186/1471-2164-7-68.
9 Keratinocyte-derived IL-36gama plays a role in hydroquinone-induced chemical leukoderma through inhibition of melanogenesis in human epidermal melanocytes. Arch Toxicol. 2019 Aug;93(8):2307-2320.
10 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
11 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
12 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
13 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
14 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.
15 A genome-wide analysis of targets of macrolide antibiotics in mammalian cells. J Biol Chem. 2020 Feb 14;295(7):2057-2067. doi: 10.1074/jbc.RA119.010770. Epub 2020 Jan 8.