General Information of Drug Off-Target (DOT) (ID: OTVVJSYX)

DOT Name Cysteine-rich protein 2 (CRIP2)
Synonyms CRP-2; Protein ESP1
Gene Name CRIP2
Related Disease
Breast cancer ( )
Breast carcinoma ( )
Epilepsy ( )
Esophageal squamous cell carcinoma ( )
Neoplasm ( )
Schizophrenia ( )
Thyroid gland carcinoma ( )
Colorectal carcinoma ( )
Cutaneous squamous cell carcinoma ( )
UniProt ID
CRIP2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2CU8
Pfam ID
PF00412
Sequence
MASKCPKCDKTVYFAEKVSSLGKDWHKFCLKCERCSKTLTPGGHAEHDGKPFCHKPCYAT
LFGPKGVNIGGAGSYIYEKPLAEGPQVTGPIEVPAARAEERKASGPPKGPSRASSVTTFT
GEPNTCPRCSKKVYFAEKVTSLGKDWHRPCLRCERCGKTLTPGGHAEHDGQPYCHKPCYG
ILFGPKGVNTGAVGSYIYDRDPEGKVQP
Tissue Specificity Widespread tissue expression; highest levels in the heart.

Molecular Interaction Atlas (MIA) of This DOT

9 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Breast cancer DIS7DPX1 Strong Biomarker [1]
Breast carcinoma DIS2UE88 Strong Biomarker [1]
Epilepsy DISBB28L Strong Biomarker [2]
Esophageal squamous cell carcinoma DIS5N2GV Strong Biomarker [3]
Neoplasm DISZKGEW Strong Biomarker [1]
Schizophrenia DISSRV2N Strong Biomarker [2]
Thyroid gland carcinoma DISMNGZ0 Strong Biomarker [4]
Colorectal carcinoma DIS5PYL0 Limited Biomarker [5]
Cutaneous squamous cell carcinoma DIS3LXUG Limited Biomarker [6]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Cysteine-rich protein 2 (CRIP2). [7]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Cysteine-rich protein 2 (CRIP2). [21]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Cysteine-rich protein 2 (CRIP2). [22]
Hexadecanoic acid DMWUXDZ Investigative Hexadecanoic acid decreases the phosphorylation of Cysteine-rich protein 2 (CRIP2). [24]
------------------------------------------------------------------------------------
14 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Cysteine-rich protein 2 (CRIP2). [8]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Cysteine-rich protein 2 (CRIP2). [9]
Doxorubicin DMVP5YE Approved Doxorubicin affects the expression of Cysteine-rich protein 2 (CRIP2). [10]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Cysteine-rich protein 2 (CRIP2). [11]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Cysteine-rich protein 2 (CRIP2). [12]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Cysteine-rich protein 2 (CRIP2). [13]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Cysteine-rich protein 2 (CRIP2). [14]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Cysteine-rich protein 2 (CRIP2). [15]
Triclosan DMZUR4N Approved Triclosan decreases the expression of Cysteine-rich protein 2 (CRIP2). [16]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of Cysteine-rich protein 2 (CRIP2). [17]
Bortezomib DMNO38U Approved Bortezomib decreases the expression of Cysteine-rich protein 2 (CRIP2). [18]
Fenretinide DMRD5SP Phase 3 Fenretinide decreases the expression of Cysteine-rich protein 2 (CRIP2). [19]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Cysteine-rich protein 2 (CRIP2). [20]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of Cysteine-rich protein 2 (CRIP2). [23]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 Drug(s)

References

1 The impact of cysteine-rich intestinal protein 1 (CRIP1) in human breast cancer.Mol Cancer. 2013 Apr 9;12:28. doi: 10.1186/1476-4598-12-28.
2 Cannabinoid Receptor Interacting Protein 1a (CRIP1a): Function and Structure.Molecules. 2019 Oct 12;24(20):3672. doi: 10.3390/molecules24203672.
3 The LIM domain protein, CRIP2, promotes apoptosis in esophageal squamous cell carcinoma.Cancer Lett. 2012 Mar;316(1):39-45. doi: 10.1016/j.canlet.2011.10.020. Epub 2011 Oct 20.
4 The Impact of Cysteine-Rich Intestinal Protein 1 (CRIP1) on Thyroid Carcinoma.Cell Physiol Biochem. 2017;43(5):2037-2046. doi: 10.1159/000484184. Epub 2017 Oct 23.
5 Cysteine-rich intestinal protein 1 suppresses apoptosis and chemosensitivity to 5-fluorouracil in colorectal cancer through ubiquitin-mediated Fas degradation.J Exp Clin Cancer Res. 2019 Mar 8;38(1):120. doi: 10.1186/s13046-019-1117-z.
6 HOXA9 inhibits HIF-1-mediated glycolysis through interacting with CRIP2 to repress cutaneous squamous cell carcinoma development.Nat Commun. 2018 Apr 16;9(1):1480. doi: 10.1038/s41467-018-03914-5.
7 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
8 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
9 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
10 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
11 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
12 Characterisation of cisplatin-induced transcriptomics responses in primary mouse hepatocytes, HepG2 cells and mouse embryonic stem cells shows conservation of regulating transcription factor networks. Mutagenesis. 2014 Jan;29(1):17-26.
13 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
14 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
15 Minimal peroxide exposure of neuronal cells induces multifaceted adaptive responses. PLoS One. 2010 Dec 17;5(12):e14352. doi: 10.1371/journal.pone.0014352.
16 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
17 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
18 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
19 Regulation of lipocalin-2 gene by the cancer chemopreventive retinoid 4-HPR. Int J Cancer. 2006 Oct 1;119(7):1599-606.
20 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
21 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
22 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
23 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
24 Functional lipidomics: Palmitic acid impairs hepatocellular carcinoma development by modulating membrane fluidity and glucose metabolism. Hepatology. 2017 Aug;66(2):432-448. doi: 10.1002/hep.29033. Epub 2017 Jun 16.