General Information of Drug Off-Target (DOT) (ID: OTX8HV5B)

DOT Name Peptidyl-glycine alpha-amidating monooxygenase (PAM)
Synonyms PAM
Gene Name PAM
UniProt ID
AMD_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
1.14.17.3; 4.3.2.5
Pfam ID
PF03712 ; PF01082 ; PF01436
Sequence
MAGRVPSLLVLLVFPSSCLAFRSPLSVFKRFKETTRPFSNECLGTTRPVVPIDSSDFALD
IRMPGVTPKQSDTYFCMSMRIPVDEEAFVIDFKPRASMDTVHHMLLFGCNMPSSTGSYWF
CDEGTCTDKANILYAWARNAPPTRLPKGVGFRVGGETGSKYFVLQVHYGDISAFRDNNKD
CSGVSLHLTRLPQPLIAGMYLMMSVDTVIPAGEKVVNSDISCHYKNYPMHVFAYRVHTHH
LGKVVSGYRVRNGQWTLIGRQSPQLPQAFYPVGHPVDVSFGDLLAARCVFTGEGRTEATH
IGGTSSDEMCNLYIMYYMEAKHAVSFMTCTQNVAPDMFRTIPPEANIPIPVKSDMVMMHE
HHKETEYKDKIPLLQQPKREEEEVLDQGDFYSLLSKLLGEREDVVHVHKYNPTEKAESES
DLVAEIANVVQKKDLGRSDAREGAEHERGNAILVRDRIHKFHRLVSTLRPPESRVFSLQQ
PPPGEGTWEPEHTGDFHMEEALDWPGVYLLPGQVSGVALDPKNNLVIFHRGDHVWDGNSF
DSKFVYQQIGLGPIEEDTILVIDPNNAAVLQSSGKNLFYLPHGLSIDKDGNYWVTDVALH
QVFKLDPNNKEGPVLILGRSMQPGSDQNHFCQPTDVAVDPGTGAIYVSDGYCNSRIVQFS
PSGKFITQWGEESSGSSPLPGQFTVPHSLALVPLLGQLCVADRENGRIQCFKTDTKEFVR
EIKHSSFGRNVFAISYIPGLLFAVNGKPHFGDQEPVQGFVMNFSNGEIIDIFKPVRKHFD
MPHDIVASEDGTVYIGDAHTNTVWKFTLTEKLEHRSVKKAGIEVQEIKEAEAVVETKMEN
KPTSSELQKMQEKQKLIKEPGSGVPVVLITTLLVIPVVVLLAIAIFIRWKKSRAFGDSEH
KLETSSGRVLGRFRGKGSGGLNLGNFFASRKGYSRKGFDRLSTEGSDQEKEDDGSESEEE
YSAPLPALAPSSS
Function
Bifunctional enzyme that catalyzes the post-translational modification of inactive peptidylglycine precursors to the corresponding bioactive alpha-amidated peptides, a terminal modification in biosynthesis of many neural and endocrine peptides. Alpha-amidation involves two sequential reactions, both of which are catalyzed by separate catalytic domains of the enzyme. The first step, catalyzed by peptidyl alpha-hydroxylating monooxygenase (PHM) domain, is the copper-, ascorbate-, and O2- dependent stereospecific hydroxylation (with S stereochemistry) at the alpha-carbon (C-alpha) of the C-terminal glycine of the peptidylglycine substrate. The second step, catalyzed by the peptidylglycine amidoglycolate lyase (PAL) domain, is the zinc-dependent cleavage of the N-C-alpha bond, producing the alpha-amidated peptide and glyoxylate. Similarly, catalyzes the two-step conversion of an N-fatty acylglycine to a primary fatty acid amide and glyoxylate.

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Reserpine DM6VM38 Approved Peptidyl-glycine alpha-amidating monooxygenase (PAM) increases the Metabolic disorder ADR of Reserpine. [16]
------------------------------------------------------------------------------------
14 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Peptidyl-glycine alpha-amidating monooxygenase (PAM). [1]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Peptidyl-glycine alpha-amidating monooxygenase (PAM). [2]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Peptidyl-glycine alpha-amidating monooxygenase (PAM). [3]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Peptidyl-glycine alpha-amidating monooxygenase (PAM). [4]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Peptidyl-glycine alpha-amidating monooxygenase (PAM). [5]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Peptidyl-glycine alpha-amidating monooxygenase (PAM). [6]
Triclosan DMZUR4N Approved Triclosan decreases the expression of Peptidyl-glycine alpha-amidating monooxygenase (PAM). [7]
Selenium DM25CGV Approved Selenium decreases the expression of Peptidyl-glycine alpha-amidating monooxygenase (PAM). [8]
Menadione DMSJDTY Approved Menadione affects the expression of Peptidyl-glycine alpha-amidating monooxygenase (PAM). [9]
Irinotecan DMP6SC2 Approved Irinotecan decreases the expression of Peptidyl-glycine alpha-amidating monooxygenase (PAM). [10]
Tocopherol DMBIJZ6 Phase 2 Tocopherol decreases the expression of Peptidyl-glycine alpha-amidating monooxygenase (PAM). [8]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Peptidyl-glycine alpha-amidating monooxygenase (PAM). [12]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Peptidyl-glycine alpha-amidating monooxygenase (PAM). [14]
chloropicrin DMSGBQA Investigative chloropicrin decreases the expression of Peptidyl-glycine alpha-amidating monooxygenase (PAM). [15]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Peptidyl-glycine alpha-amidating monooxygenase (PAM). [11]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Peptidyl-glycine alpha-amidating monooxygenase (PAM). [13]
------------------------------------------------------------------------------------

References

1 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
2 Integrative "-Omics" analysis in primary human hepatocytes unravels persistent mechanisms of cyclosporine A-induced cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
3 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
4 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
5 Long-term estrogen exposure promotes carcinogen bioactivation, induces persistent changes in gene expression, and enhances the tumorigenicity of MCF-7 human breast cancer cells. Toxicol Appl Pharmacol. 2009 Nov 1;240(3):355-66.
6 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
7 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
8 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
9 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
10 Clinical determinants of response to irinotecan-based therapy derived from cell line models. Clin Cancer Res. 2008 Oct 15;14(20):6647-55.
11 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
12 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
13 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
14 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
15 Molecular targets of chloropicrin in human airway epithelial cells. Toxicol In Vitro. 2017 Aug;42:247-254.
16 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.