General Information of Drug Combination (ID: DC2FM0H)

Drug Combination Name
Gabapentin Ropivacaine
Indication
Disease Entry Status REF
Total Knee Arthroplasty Phase 1 [1]
Component Drugs Gabapentin   DM6T924 Ropivacaine   DMSPJG2
Small molecular drug Small molecular drug
2D MOL 2D MOL
3D MOL 3D MOL

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of Gabapentin
Disease Entry ICD 11 Status REF
Complex partial seizure 8A68.0 Approved [2]
Postherpetic neuralgia 1E91.5 Approved [3]
Solid tumour/cancer 2A00-2F9Z Phase 3 [2]
Gabapentin Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Gamma-aminobutyric acid B receptor (GABBR) TTDCVZW GABR1_HUMAN; GABR2_HUMAN Antagonist [6]
------------------------------------------------------------------------------------
Gabapentin Interacts with 3 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
Organic cation transporter 2 (SLC22A2) DT9IDPW S22A2_HUMAN Substrate [7]
Organic cation/carnitine transporter 1 (SLC22A4) DT2EG60 S22A4_HUMAN Substrate [8]
L-type amino acid transporter 1 (SLC7A5) DT48T0N LAT1_HUMAN Substrate [9]
------------------------------------------------------------------------------------
Gabapentin Interacts with 18 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
D(1A) dopamine receptor (DRD1) OTLZPBT7 DRD1_HUMAN Increases ADR [10]
Histamine H1 receptor (HRH1) OT8F9FV6 HRH1_HUMAN Increases ADR [10]
5-hydroxytryptamine receptor 3A (HTR3A) OTAIV1AK 5HT3A_HUMAN Increases ADR [10]
Muscarinic acetylcholine receptor M1 (CHRM1) OTKW3E6B ACM1_HUMAN Increases ADR [10]
5-hydroxytryptamine receptor 2B (HTR2B) OTM1AD9J 5HT2B_HUMAN Increases ADR [10]
Alpha-1A adrenergic receptor (ADRA1A) OTUIWCL5 ADA1A_HUMAN Increases ADR [10]
5-hydroxytryptamine receptor 2A (HTR2A) OTWXJX0M 5HT2A_HUMAN Increases ADR [10]
Glutamine--fructose-6-phosphate aminotransferase 1 (GFPT1) OTQBDO45 GFPT1_HUMAN Increases ADR [10]
Transforming growth factor beta-1 proprotein (TGFB1) OTV5XHVH TGFB1_HUMAN Increases ADR [10]
Serum paraoxonase/arylesterase 1 (PON1) OTD0Z2XO PON1_HUMAN Decreases Activity [11]
ATP-dependent translocase ABCB1 (ABCB1) OTEJROBO MDR1_HUMAN Decreases Activity [12]
Lactoperoxidase (LPO) OTJ9QKX9 PERL_HUMAN Decreases Expression [13]
Sodium-dependent serotonin transporter (SLC6A4) OT6FGDLW SC6A4_HUMAN Decreases Expression [13]
Serine/threonine-protein kinase mTOR (MTOR) OTHH8KU7 MTOR_HUMAN Decreases Expression [13]
Glutamate receptor ionotropic, NMDA 1 (GRIN1) OTZ5YBO8 NMDZ1_HUMAN Decreases Expression [13]
Potassium voltage-gated channel subfamily H member 2 (KCNH2) OTZX881H KCNH2_HUMAN Decreases Activity [14]
Voltage-dependent calcium channel subunit alpha-2/delta-2 (CACNA2D2) OTFJXVQQ CA2D2_HUMAN Affects Binding [15]
SH3 and multiple ankyrin repeat domains protein 2 (SHANK2) OTSQTPFQ SHAN2_HUMAN Decreases Expression [13]
------------------------------------------------------------------------------------
⏷ Show the Full List of 18 DOT(s)
Indication(s) of Ropivacaine
Disease Entry ICD 11 Status REF
Anaesthesia 9A78.6 Approved [4]
Appendicitis DB10 Approved [5]
Ropivacaine Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Voltage-gated sodium channel alpha Nav1.8 (SCN10A) TT90XZ8 SCNAA_HUMAN Modulator [17]
------------------------------------------------------------------------------------
Ropivacaine Interacts with 4 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [18]
Cytochrome P450 1A2 (CYP1A2) DEJGDUW CP1A2_HUMAN Metabolism [19]
Cytochrome P450 2D6 (CYP2D6) DECB0K3 CP2D6_HUMAN Metabolism [20]
Cytochrome P450 2B6 (CYP2B6) DEPKLMQ CP2B6_HUMAN Metabolism [20]
------------------------------------------------------------------------------------
Ropivacaine Interacts with 24 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Apoptosis-inducing factor 1, mitochondrial (AIFM1) OTKPWB7Q AIFM1_HUMAN Increases Expression [21]
L-lactate dehydrogenase A chain (LDHA) OTN7K4XB LDHA_HUMAN Increases Expression [22]
Interleukin-1 beta (IL1B) OT0DWXXB IL1B_HUMAN Increases Expression [22]
Heme oxygenase 1 (HMOX1) OTC1W6UX HMOX1_HUMAN Increases Expression [22]
Poly polymerase 1 (PARP1) OT310QSG PARP1_HUMAN Increases Cleavage [23]
Caspase-1 (CASP1) OTZ3YQFU CASP1_HUMAN Increases Cleavage [22]
RAC-alpha serine/threonine-protein kinase (AKT1) OT8H2YY7 AKT1_HUMAN Decreases Phosphorylation [16]
Serine/threonine-protein kinase mTOR (MTOR) OTHH8KU7 MTOR_HUMAN Decreases Phosphorylation [16]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Decreases Expression [24]
Proliferation marker protein Ki-67 (MKI67) OTA8N1QI KI67_HUMAN Decreases Expression [16]
Potassium voltage-gated channel subfamily KQT member 1 (KCNQ1) OT8SPJNX KCNQ1_HUMAN Decreases Activity [25]
Caspase-9 (CASP9) OTD4RFFG CASP9_HUMAN Decreases Expression [24]
Gasdermin-D (GSDMD) OTH39BKI GSDMD_HUMAN Increases Cleavage [22]
Apoptosis regulator BAX (BAX) OTAW0V4V BAX_HUMAN Increases Expression [16]
Sequestosome-1 (SQSTM1) OTGY5D5J SQSTM_HUMAN Decreases Expression [16]
Interleukin-18 (IL18) OTBB2A8O IL18_HUMAN Increases Expression [22]
Beclin-1 (BECN1) OT4X293M BECN1_HUMAN Increases Expression [16]
NACHT, LRR and PYD domains-containing protein 3 (NLRP3) OTZM6MHU NLRP3_HUMAN Increases Expression [22]
Sulfotransferase 1A1 (SULT1A1) OT0K7JIE ST1A1_HUMAN Increases Sulfation [26]
Histamine H1 receptor (HRH1) OT8F9FV6 HRH1_HUMAN Affects Binding [27]
Apoptosis regulator Bcl-2 (BCL2) OT9DVHC0 BCL2_HUMAN Decreases Response To Substance [23]
Sulfotransferase 1E1 (SULT1E1) OTGPJ517 ST1E1_HUMAN Increases Sulfation [26]
Sulfotransferase 1A3 (SULT1A4) OTHJ8WWV ST1A3_HUMAN Increases Sulfation [26]
Clusterin (CLU) OTQGG0JM CLUS_HUMAN Decreases Response To Substance [23]
------------------------------------------------------------------------------------
⏷ Show the Full List of 24 DOT(s)

References

1 ClinicalTrials.gov (NCT01489631) Analgesia After Total Knee Replacement Surgery
2 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 5483).
3 Gabapentin FDA Label
4 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 7602).
5 Ropivacaine FDA Label
6 Gabapentin increases a tonic inhibitory conductance in hippocampal pyramidal neurons. Anesthesiology. 2006 Aug;105(2):325-33.
7 Clinical pharmacokinetic drug interaction studies of gabapentin enacarbil, a novel transported prodrug of gabapentin, with naproxen and cimetidine. Br J Clin Pharmacol. 2010 May;69(5):498-507.
8 Effects of genetic variation in the novel organic cation transporter, OCTN1, on the renal clearance of gabapentin. Clin Pharmacol Ther. 2008 Mar;83(3):416-21.
9 Transport of gabapentin by LAT1 (SLC7A5). Biochem Pharmacol. 2013 Jun 1;85(11):1672-83.
10 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.
11 Antiepileptic drugs: impacts on human serum paraoxonase-1. J Biochem Mol Toxicol. 2017 Jun;31(6).
12 Functional evaluation of polymorphisms in the human ABCB1 gene and the impact on clinical responses of antiepileptic drugs. Pharmacogenet Genomics. 2008 May;18(5):390-402. doi: 10.1097/FPC.0b013e3282f85e36.
13 Establishment of a 13 genes-based molecular prediction score model to discriminate the neurotoxic potential of food relevant-chemicals. Toxicol Lett. 2022 Feb 1;355:1-18. doi: 10.1016/j.toxlet.2021.10.013. Epub 2021 Nov 5.
14 Effects of the antiepileptic drugs lamotrigine, topiramate and gabapentin on hERG potassium currents. Epilepsy Res. 2005 Jan;63(1):17-25. doi: 10.1016/j.eplepsyres.2004.10.002. Epub 2004 Dec 8.
15 Tissue-specific expression and gabapentin-binding properties of calcium channel alpha2delta subunit subtypes. J Membr Biol. 2001 Nov 1;184(1):35-43. doi: 10.1007/s00232-001-0072-7.
16 Ropivacaine inhibits proliferation?and invasion?and promotes apoptosis and autophagy in bladder cancer cells via inhibiting PI3K/AKT pathway. J Biochem Mol Toxicol. 2023 Jan;37(1):e23233. doi: 10.1002/jbt.23233. Epub 2022 Oct 3.
17 Drugs@FDA. U.S. Food and Drug Administration. U.S. Department of Health & Human Services.
18 Metabolism of a new local anesthetic, ropivacaine, by human hepatic cytochrome P450. Anesthesiology. 1995 Jan;82(1):214-20.
19 Metabolism of ropivacaine in humans is mediated by CYP1A2 and to a minor extent by CYP3A4: an interaction study with fluvoxamine and ketoconazole as in vivo inhibitors. Clin Pharmacol Ther. 1998 Nov;64(5):484-91.
20 Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev. 2002 Feb-May;34(1-2):83-448.
21 Effect of parthanatos on ropivacaine-induced damage in SH-SY5Y cells. Clin Exp Pharmacol Physiol. 2017 May;44(5):586-594. doi: 10.1111/1440-1681.12730.
22 Dexmedetomidine protects against Ropivacaine-induced neuronal pyroptosis via the Nrf2/HO-1 pathway. J Toxicol Sci. 2023;48(3):139-148. doi: 10.2131/jts.48.139.
23 Ectopic expression of clusterin/apolipoprotein J or Bcl-2 decreases the sensitivity of HaCaT cells to toxic effects of ropivacaine. Cell Res. 2004 Oct;14(5):415-22. doi: 10.1038/sj.cr.7290242.
24 Apoptosis and mitochondrial dysfunction in human chondrocytes following exposure to lidocaine, bupivacaine, and ropivacaine. J Bone Joint Surg Am. 2010 Mar;92(3):609-18. doi: 10.2106/JBJS.H.01847.
25 Long QT 1 mutation KCNQ1A344V increases local anesthetic sensitivity of the slowly activating delayed rectifier potassium current. Anesthesiology. 2006 Sep;105(3):511-20. doi: 10.1097/00000542-200609000-00015.
26 Studies on sulfation of synthesized metabolites from the local anesthetics ropivacaine and lidocaine using human cloned sulfotransferases. Drug Metab Dispos. 1999 Sep;27(9):1057-63.
27 H(1)R mediates local anesthetic-induced vascular permeability in angioedema. Toxicol Appl Pharmacol. 2020 Apr 1;392:114921. doi: 10.1016/j.taap.2020.114921. Epub 2020 Feb 12.