General Information of Drug Combination (ID: DC2P7R8)

Drug Combination Name
Perhexiline Artemisinin
Indication
Disease Entry Status REF
DD2 Investigative [1]
Component Drugs Perhexiline   DMINO7Z Artemisinin   DMOY7W3
Small molecular drug Small molecular drug
2D MOL 2D MOL
3D MOL 3D MOL
High-throughput Screening Result Testing Cell Line: DD2
Zero Interaction Potency (ZIP) Score: 4.989
Bliss Independence Score: 6.176
Loewe Additivity Score: 1.28
LHighest Single Agent (HSA) Score: 5.968

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of Perhexiline
Disease Entry ICD 11 Status REF
Angina pectoris BA40 Approved [2]
Perhexiline Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Carnitine O-palmitoyltransferase I (CPT1B) TTDL0NY CPT1B_HUMAN Inhibitor [2]
------------------------------------------------------------------------------------
Perhexiline Interacts with 3 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [5]
Cytochrome P450 2D6 (CYP2D6) DECB0K3 CP2D6_HUMAN Metabolism [5]
Cytochrome P450 2B6 (CYP2B6) DEPKLMQ CP2B6_HUMAN Metabolism [5]
------------------------------------------------------------------------------------
Perhexiline Interacts with 19 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Cytochrome P450 2D6 (CYP2D6) OTZJC802 CP2D6_HUMAN Decreases Response To Substance [6]
Alpha-1-antichymotrypsin (SERPINA3) OT9BP2S0 AACT_HUMAN Increases Expression [4]
Serine protease hepsin (HPN) OT7QNA61 HEPS_HUMAN Increases Expression [4]
Fatty acid-binding protein, liver (FABP1) OTR34ETM FABPL_HUMAN Increases Expression [4]
Solute carrier family 2, facilitated glucose transporter member 3 (SLC2A3) OT2HZK5M GTR3_HUMAN Decreases Expression [4]
Lanosterol synthase (LSS) OT9W2SFH LSS_HUMAN Increases Expression [4]
Transgelin (TAGLN) OTAEZ0KP TAGL_HUMAN Decreases Expression [4]
Acid ceramidase (ASAH1) OT1DNGXL ASAH1_HUMAN Increases Expression [4]
Nuclear receptor subfamily 0 group B member 2 (NR0B2) OT7UVICX NR0B2_HUMAN Increases Expression [4]
Lysophospholipase D GDPD3 (GDPD3) OTOHM9QM GDPD3_HUMAN Increases Expression [4]
Fibronectin type III domain-containing protein 4 (FNDC4) OTOQK0WK FNDC4_HUMAN Increases Expression [4]
Protein DEPP1 (DEPP1) OTB36PHJ DEPP1_HUMAN Increases Expression [4]
Nuclear protein 1 (NUPR1) OT4FU8C0 NUPR1_HUMAN Increases Expression [7]
Asparagine synthetase (ASNS) OT8R922G ASNS_HUMAN Increases Expression [7]
Inhibin beta E chain (INHBE) OTOI2NYG INHBE_HUMAN Increases Expression [7]
AP-1 complex subunit sigma-1A (AP1S1) OTQ2H8DN AP1S1_HUMAN Decreases Expression [7]
Transmembrane protease serine 2 (TMPRSS2) OTN44YQ5 TMPS2_HUMAN Increases Expression [8]
Phosphatidylcholine translocator ABCB4 (ABCB4) OTE6PY83 MDR3_HUMAN Decreases Activity [9]
Potassium voltage-gated channel subfamily H member 2 (KCNH2) OTZX881H KCNH2_HUMAN Affects Binding [10]
------------------------------------------------------------------------------------
⏷ Show the Full List of 19 DOT(s)
Indication(s) of Artemisinin
Disease Entry ICD 11 Status REF
Malaria 1F40-1F45 Approved [3]
Artemisinin Interacts with 2 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Plasmodium Dihydroorotate dehydrogenase (Malaria DHOdehase) TT3PQ2Y PYRD_PLAF7 Inhibitor [3]
Sarcoplasmic/endoplasmic reticulum calcium ATPase (ATP2A) TTZVSJ2 NOUNIPROTAC Inhibitor [3]
------------------------------------------------------------------------------------
Artemisinin Interacts with 4 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [11]
Cytochrome P450 2A6 (CYP2A6) DEJVYAZ CP2A6_HUMAN Metabolism [12]
Glutathione S-transferase alpha-1 (GSTA1) DE4ZHS1 GSTA1_HUMAN Metabolism [13]
Cytochrome P450 2B6 (CYP2B6) DEPKLMQ CP2B6_HUMAN Metabolism [11]
------------------------------------------------------------------------------------
Artemisinin Interacts with 10 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Glutathione S-transferase A1 (GSTA1) OTA7K5XA GSTA1_HUMAN Decreases Activity [13]
Cytochrome P450 3A4 (CYP3A4) OTQGYY83 CP3A4_HUMAN Increases Expression [14]
Cytochrome P450 2B6 (CYP2B6) OTOYO4S7 CP2B6_HUMAN Increases Expression [14]
Cytochrome P450 1A2 (CYP1A2) OTLLBX48 CP1A2_HUMAN Decreases Activity [15]
Cytochrome P450 2C19 (CYP2C19) OTFMJYYE CP2CJ_HUMAN Decreases Activity [15]
Glutathione S-transferase P (GSTP1) OTLP0A0Y GSTP1_HUMAN Decreases Activity [13]
ATP-dependent translocase ABCB1 (ABCB1) OTEJROBO MDR1_HUMAN Increases Expression [14]
Cellular tumor antigen p53 (TP53) OTIE1VH3 P53_HUMAN Increases Activity [16]
Isocitrate dehydrogenase subunit alpha, mitochondrial (IDH3A) OT5QQB5L IDH3A_HUMAN Decreases Expression [16]
Nuclear receptor subfamily 1 group I member 3 (NR1I3) OTS3SGH7 NR1I3_HUMAN Increases Activity [17]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 DOT(s)

References

1 Recurrent recessive mutation in deoxyguanosine kinase causes idiopathic noncirrhotic portal hypertension.Hepatology. 2016 Jun;63(6):1977-86. doi: 10.1002/hep.28499. Epub 2016 Mar 31.
2 Perhexiline. Cardiovasc Drug Rev. 2007 Spring;25(1):76-97.
3 The fight against drug-resistant malaria: novel plasmodial targets and antimalarial drugs. Curr Med Chem. 2008;15(2):161-71.
4 A toxicogenomic approach to drug-induced phospholipidosis: analysis of its induction mechanism and establishment of a novel in vitro screening system. Toxicol Sci. 2005 Feb;83(2):282-92.
5 CYP2B6, CYP2D6, and CYP3A4 catalyze the primary oxidative metabolism of perhexiline enantiomers by human liver microsomes. Drug Metab Dispos. 2007 Jan;35(1):128-38.
6 Customised in vitro model to detect human metabolism-dependent idiosyncratic drug-induced liver injury. Arch Toxicol. 2018 Jan;92(1):383-399. doi: 10.1007/s00204-017-2036-4. Epub 2017 Jul 31.
7 Determination of phospholipidosis potential based on gene expression analysis in HepG2 cells. Toxicol Sci. 2007 Mar;96(1):101-14.
8 Effect of common medications on the expression of SARS-CoV-2 entry receptors in liver tissue. Arch Toxicol. 2020 Dec;94(12):4037-4041. doi: 10.1007/s00204-020-02869-1. Epub 2020 Aug 17.
9 Evaluating the Role of Multidrug Resistance Protein 3 (MDR3) Inhibition in Predicting Drug-Induced Liver Injury Using 125 Pharmaceuticals. Chem Res Toxicol. 2017 May 15;30(5):1219-1229. doi: 10.1021/acs.chemrestox.7b00048. Epub 2017 May 4.
10 Drug binding to the inactivated state is necessary but not sufficient for high-affinity binding to human ether--go-go-related gene channels. Mol Pharmacol. 2008 Nov;74(5):1443-52. doi: 10.1124/mol.108.049056. Epub 2008 Aug 13.
11 Antimalarial artemisinin drugs induce cytochrome P450 and MDR1 expression by activation of xenosensors pregnane X receptor and constitutive androstane receptor. Mol Pharmacol. 2005 Jun;67(6):1954-65.
12 Identification of the human cytochrome P450 enzymes involved in the in vitro metabolism of artemisinin. Br J Clin Pharmacol. 1999 Oct;48(4):528-35.
13 Inhibition of glutathione S-transferases by antimalarial drugs possible implications for circumventing anticancer drug resistance. Int J Cancer. 2002 Feb 10;97(5):700-5.
14 Antimalarial artemisinin drugs induce cytochrome P450 and MDR1 expression by activation of xenosensors pregnane X receptor and constitutive androstane receptor. Mol Pharmacol. 2005 Jun;67(6):1954-65.
15 Application of higher throughput screening (HTS) inhibition assays to evaluate the interaction of antiparasitic drugs with cytochrome P450s. Drug Metab Dispos. 2001 Jan;29(1):30-5.
16 Identification of Compounds That Inhibit Estrogen-Related Receptor Alpha Signaling Using High-Throughput Screening Assays. Molecules. 2019 Feb 27;24(5):841. doi: 10.3390/molecules24050841.
17 In vivo and mechanistic evidence of nuclear receptor CAR induction by artemisinin. Eur J Clin Invest. 2006 Sep;36(9):647-53. doi: 10.1111/j.1365-2362.2006.01700.x.