General Information of Drug Combination (ID: DCH1MIJ)

Drug Combination Name
Digitoxin Nilotinib
Indication
Disease Entry Status REF
Amelanotic melanoma Investigative [1]
Component Drugs Digitoxin   DMWVIGP Nilotinib   DM7HXWT
Small molecular drug Small molecular drug
2D MOL 2D MOL
3D MOL 3D MOL
High-throughput Screening Result Testing Cell Line: MDA-MB-435
Zero Interaction Potency (ZIP) Score: 0.18
Bliss Independence Score: 2.8
Loewe Additivity Score: 2.69
LHighest Single Agent (HSA) Score: 1.8

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of Digitoxin
Disease Entry ICD 11 Status REF
Arrhythmia BC9Z Approved [2]
Congestive cardiac insufficiency BD1Z Approved [2]
Heart failure BD10-BD13 Approved [2]
Digitoxin Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Sodium/potassium-transporting ATPase (SPT ATPase) TTQ38E9 AT1A1_HUMAN; AT1A2_HUMAN; AT1A3_HUMAN; AT1B1_HUMAN; AT1B2_HUMAN; AT1B3_HUMAN Inhibitor [4]
------------------------------------------------------------------------------------
Digitoxin Interacts with 1 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
P-glycoprotein 1 (ABCB1) DTUGYRD MDR1_HUMAN Substrate [5]
------------------------------------------------------------------------------------
Digitoxin Interacts with 3 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [6]
UDP-glucuronosyltransferase 1A1 (UGT1A1) DEYGVN4 UD11_HUMAN Metabolism [7]
Sulfotransferase 1A1 (SULT1A1) DEYWLRK ST1A1_HUMAN Metabolism [8]
------------------------------------------------------------------------------------
Digitoxin Interacts with 22 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
ATP-dependent translocase ABCB1 (ABCB1) OTEJROBO MDR1_HUMAN Increases Transport [9]
Nitric oxide synthase 3 (NOS3) OTLDT7NR NOS3_HUMAN Increases Activity [10]
Serine/threonine-protein kinase Chk1 (CHEK1) OTTTI622 CHK1_HUMAN Decreases Expression [11]
Baculoviral IAP repeat-containing protein 5 (BIRC5) OTILXZYL BIRC5_HUMAN Decreases Expression [11]
Serine/threonine-protein kinase Chk2 (CHEK2) OT8ZPCNS CHK2_HUMAN Decreases Expression [11]
Cellular tumor antigen p53 (TP53) OTIE1VH3 P53_HUMAN Decreases Expression [11]
Cyclin-dependent kinase 1 (CDK1) OTW1SC2N CDK1_HUMAN Decreases Expression [11]
Interleukin-8 (CXCL8) OTS7T5VH IL8_HUMAN Decreases Secretion [12]
G2/mitotic-specific cyclin-B1 (CCNB1) OT19S7E5 CCNB1_HUMAN Decreases Expression [11]
Ribosomal protein S6 kinase beta-1 (RPS6KB1) OTAELNGX KS6B1_HUMAN Decreases Phosphorylation [13]
G1/S-specific cyclin-D1 (CCND1) OT8HPTKJ CCND1_HUMAN Decreases Expression [13]
NF-kappa-B inhibitor alpha (NFKBIA) OTFT924M IKBA_HUMAN Decreases Phosphorylation [12]
Tyrosine-protein phosphatase non-receptor type 6 (PTPN6) OT33XNZM PTN6_HUMAN Increases Expression [13]
Cyclin-dependent kinase inhibitor 1 (CDKN1A) OTQWHCZE CDN1A_HUMAN Decreases Expression [11]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Decreases Expression [11]
Cyclin-dependent kinase inhibitor 1B (CDKN1B) OTNY5LLZ CDN1B_HUMAN Decreases Expression [11]
Caspase-9 (CASP9) OTD4RFFG CASP9_HUMAN Increases Cleavage [11]
Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and dual-specificity protein phosphatase PTEN (PTEN) OTOWDUNT PTEN_HUMAN Increases Expression [13]
Cytochrome c (CYCS) OTBFALJD CYC_HUMAN Increases Expression [11]
Eukaryotic translation initiation factor 4E-binding protein 1 (EIF4EBP1) OTHBQVD5 4EBP1_HUMAN Decreases Phosphorylation [13]
Caspase-8 (CASP8) OTA8TVI8 CASP8_HUMAN Increases Cleavage [11]
E3 SUMO-protein ligase PIAS3 (PIAS3) OT3TWH9R PIAS3_HUMAN Increases Expression [13]
------------------------------------------------------------------------------------
⏷ Show the Full List of 22 DOT(s)
Indication(s) of Nilotinib
Disease Entry ICD 11 Status REF
Chronic myelogenous leukaemia 2A20.0 Approved [3]
Nilotinib Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Fusion protein Bcr-Abl (Bcr-Abl) TTS7G69 BCR_HUMAN-ABL1_HUMAN Modulator [17]
------------------------------------------------------------------------------------
Nilotinib Interacts with 5 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
Multidrug resistance-associated protein 2 (ABCC2) DTFI42L MRP2_HUMAN Substrate [18]
P-glycoprotein 1 (ABCB1) DTUGYRD MDR1_HUMAN Substrate [19]
Breast cancer resistance protein (ABCG2) DTI7UX6 ABCG2_HUMAN Substrate [18]
Organic anion transporting polypeptide 1B1 (SLCO1B1) DT3D8F0 SO1B1_HUMAN Substrate [20]
Organic anion transporting polypeptide 1B3 (SLCO1B3) DT9C1TS SO1B3_HUMAN Substrate [20]
------------------------------------------------------------------------------------
Nilotinib Interacts with 2 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [21]
Cytochrome P450 2C8 (CYP2C8) DES5XRU CP2C8_HUMAN Metabolism [22]
------------------------------------------------------------------------------------
Nilotinib Interacts with 35 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Broad substrate specificity ATP-binding cassette transporter ABCG2 (ABCG2) OTW8V2V1 ABCG2_HUMAN Affects Response To Substance [23]
ATP-dependent translocase ABCB1 (ABCB1) OTEJROBO MDR1_HUMAN Affects Response To Substance [24]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Activity [25]
Caspase-7 (CASP7) OTAPJ040 CASP7_HUMAN Increases Activity [25]
Potassium voltage-gated channel subfamily H member 2 (KCNH2) OTZX881H KCNH2_HUMAN Decreases Activity [25]
Acetyl-CoA carboxylase 1 (ACACA) OT5CQPZY ACACA_HUMAN Increases Phosphorylation [25]
Retinal dehydrogenase 2 (ALDH1A2) OTJB560Z AL1A2_HUMAN Decreases Expression [15]
Tyrosine-protein kinase ABL1 (ABL1) OT09YVXH ABL1_HUMAN Decreases Phosphorylation [16]
Protein c-Fos (FOS) OTJBUVWS FOS_HUMAN Increases Expression [16]
Cellular tumor antigen p53 (TP53) OTIE1VH3 P53_HUMAN Increases Secretion [26]
Transcription factor Jun (JUN) OTCYBO6X JUN_HUMAN Increases Expression [16]
Homeobox protein Hox-B7 (HOXB7) OTC7WYU8 HXB7_HUMAN Increases Expression [15]
Poly polymerase 1 (PARP1) OT310QSG PARP1_HUMAN Increases Cleavage [27]
Apoptosis regulator Bcl-2 (BCL2) OT9DVHC0 BCL2_HUMAN Decreases Expression [27]
Endoplasmic reticulum chaperone BiP (HSPA5) OTFUIRAO BIP_HUMAN Increases Expression [16]
Breakpoint cluster region protein (BCR) OTCN76C1 BCR_HUMAN Decreases Phosphorylation [28]
Transcription factor JunB (JUNB) OTG2JXV5 JUNB_HUMAN Increases Expression [16]
Homeobox protein Hox-B9 (HOXB9) OTMVHQOU HXB9_HUMAN Increases Expression [15]
Cyclic AMP-dependent transcription factor ATF-6 alpha (ATF6) OTAFHAVI ATF6A_HUMAN Decreases Expression [16]
Histidine decarboxylase (HDC) OT4WA5YQ DCHS_HUMAN Decreases Expression [29]
Paired box protein Pax-3 (PAX3) OTN5PJZV PAX3_HUMAN Decreases Expression [15]
Alanine aminotransferase 1 (GPT) OTOXOA0Q ALAT1_HUMAN Increases Secretion [30]
Paired box protein Pax-6 (PAX6) OTOC9876 PAX6_HUMAN Increases Expression [15]
DNA damage-inducible transcript 3 protein (DDIT3) OTI8YKKE DDIT3_HUMAN Increases Expression [16]
Crk-like protein (CRKL) OTOYSD1R CRKL_HUMAN Decreases Phosphorylation [16]
Glutamate--cysteine ligase regulatory subunit (GCLM) OT6CP234 GSH0_HUMAN Increases Expression [16]
Homeobox protein MOX-1 (MEOX1) OTJEMT2D MEOX1_HUMAN Decreases Expression [15]
Caspase-9 (CASP9) OTD4RFFG CASP9_HUMAN Increases Cleavage [27]
Mesoderm posterior protein 2 (MESP2) OT7H4LYA MESP2_HUMAN Decreases Expression [15]
Transcription factor 15 (TCF15) OTA6UCWC TCF15_HUMAN Decreases Expression [15]
Oligodendrocyte transcription factor 3 (OLIG3) OTU8XLAF OLIG3_HUMAN Increases Expression [15]
ER degradation-enhancing alpha-mannosidase-like protein 1 (EDEM1) OTWHN69S EDEM1_HUMAN Increases Expression [16]
Eyes absent homolog 1 (EYA1) OTHU807A EYA1_HUMAN Decreases Expression [15]
Forkhead box protein C2 (FOXC2) OT83P1E0 FOXC2_HUMAN Decreases Expression [15]
Neurogenin-2 (NEUROG2) OTAEMIGT NGN2_HUMAN Increases Expression [15]
------------------------------------------------------------------------------------
⏷ Show the Full List of 35 DOT(s)

Test Results of This Drug Combination in Other Disease Systems

Indication DrugCom ID Cell Line Status REF
Adenocarcinoma DC0IAFY OVCAR3 Investigative [1]
Adenocarcinoma DCGK14D HT29 Investigative [1]
Amelanotic melanoma DCXZBKJ M14 Investigative [1]
Childhood T acute lymphoblastic leukemia DCG3UCK CCRF-CEM Investigative [1]
Cutaneous melanoma DC0ZW8S SK-MEL-5 Investigative [1]
Lung adenocarcinoma DCOW5N4 HOP-62 Investigative [1]
Breast adenocarcinoma DCWOHN2 MDA-MB-468 Investigative [31]
------------------------------------------------------------------------------------
⏷ Show the Full List of 7 DrugCom(s)

References

1 Recurrent recessive mutation in deoxyguanosine kinase causes idiopathic noncirrhotic portal hypertension.Hepatology. 2016 Jun;63(6):1977-86. doi: 10.1002/hep.28499. Epub 2016 Mar 31.
2 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 6782).
3 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 5697).
4 Treatment of congestive heart failure--current status of use of digitoxin. Eur J Clin Invest. 2001;31 Suppl 2:10-7.
5 The association of ABCB1 polymorphisms and elevated serum digitoxin concentrations in geriatric patients. Eur J Clin Pharmacol. 2008 Apr;64(4):367-72.
6 Species differences in the toxicity and cytochrome P450 IIIA-dependent metabolism of digitoxin. Mol Pharmacol. 1991 Nov;40(5):859-67.
7 Use of a human liver microsome bank in drug glucuronidation studies. Toxicol In Vitro. 1991;5(5-6):559-62.
8 Hydroxysteroid sulfotransferase and a specific UDP-glucuronosyltransferase are involved in the metabolism of digitoxin in man. Naunyn Schmiedebergs Arch Pharmacol. 1992 Aug;346(2):226-33.
9 Heterogeneous transport of digitalis-like compounds by P-glycoprotein in vesicular and cellular assays. Toxicol In Vitro. 2016 Apr;32:138-45. doi: 10.1016/j.tiv.2015.12.009. Epub 2015 Dec 17.
10 Digitoxin elicits anti-inflammatory and vasoprotective properties in endothelial cells: Therapeutic implications for the treatment of atherosclerosis? Atherosclerosis. 2009 Oct;206(2):390-6.
11 Digitoxin and a synthetic monosaccharide analog inhibit cell viability in lung cancer cells. Toxicol Appl Pharmacol. 2012 Jan 1;258(1):51-60. doi: 10.1016/j.taap.2011.10.007. Epub 2011 Oct 18.
12 Digitoxin mimics gene therapy with CFTR and suppresses hypersecretion of IL-8 from cystic fibrosis lung epithelial cells. Proc Natl Acad Sci U S A. 2004 May 18;101(20):7693-8. doi: 10.1073/pnas.0402030101. Epub 2004 May 10.
13 Digitoxin promotes apoptosis and inhibits proliferation and migration by reducing HIF-1 and STAT3 in KRAS mutant human colon cancer cells. Chem Biol Interact. 2022 Jan 5;351:109729. doi: 10.1016/j.cbi.2021.109729. Epub 2021 Oct 28.
14 Assessment of the inhibition potential of Licochalcone A against human UDP-glucuronosyltransferases. Food Chem Toxicol. 2016 Apr;90:112-22.
15 Exposure-based assessment of chemical teratogenicity using morphogenetic aggregates of human embryonic stem cells. Reprod Toxicol. 2020 Jan;91:74-91. doi: 10.1016/j.reprotox.2019.10.004. Epub 2019 Nov 8.
16 Endoplasmic reticulum stress-mediated apoptosis in imatinib-resistant leukemic K562-r cells triggered by AMN107 combined with arsenic trioxide. Exp Biol Med (Maywood). 2013 Aug 1;238(8):932-42. doi: 10.1177/1535370213492689. Epub 2013 Jul 24.
17 2007 FDA drug approvals: a year of flux. Nat Rev Drug Discov. 2008 Feb;7(2):107-9.
18 Interaction of nilotinib, dasatinib and bosutinib with ABCB1 and ABCG2: implications for altered anti-cancer effects and pharmacological properties. Br J Pharmacol. 2009 Oct;158(4):1153-64.
19 KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017 Jan 4;45(D1):D353-D361. (dg:DG01665)
20 Contribution of OATP1B1 and OATP1B3 to the disposition of sorafenib and sorafenib-glucuronide. Clin Cancer Res. 2013 Mar 15;19(6):1458-66.
21 Drug interactions with the tyrosine kinase inhibitors imatinib, dasatinib, and nilotinib. Blood. 2011 Feb 24;117(8):e75-87.
22 Role of cytochrome P450 2C8 in drug metabolism and interactions. Pharmacol Rev. 2016 Jan;68(1):168-241.
23 Resistance to daunorubicin, imatinib, or nilotinib depends on expression levels of ABCB1 and ABCG2 in human leukemia cells. Chem Biol Interact. 2014 Aug 5;219:203-10. doi: 10.1016/j.cbi.2014.06.009. Epub 2014 Jun 19.
24 Reversal of ABCB1 mediated efflux by imatinib and nilotinib in cells expressing various transporter levels. Chem Biol Interact. 2017 Aug 1;273:171-179. doi: 10.1016/j.cbi.2017.06.012. Epub 2017 Jun 13.
25 Multi-parameter in vitro toxicity testing of crizotinib, sunitinib, erlotinib, and nilotinib in human cardiomyocytes. Toxicol Appl Pharmacol. 2013 Oct 1;272(1):245-55.
26 p53 Gene (NY-CO-13) Levels in Patients with Chronic Myeloid Leukemia: The Role of Imatinib and Nilotinib. Diseases. 2018 Jan 25;6(1):13. doi: 10.3390/diseases6010013.
27 Nilotinib reduced the viability of human ovarian cancer cells via mitochondria-dependent apoptosis, independent of JNK activation. Toxicol In Vitro. 2016 Mar;31:1-11. doi: 10.1016/j.tiv.2015.11.002. Epub 2015 Nov 6.
28 AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell. 2009 Nov 6;16(5):401-12. doi: 10.1016/j.ccr.2009.09.028.
29 The CML-related oncoprotein BCR/ABL induces expression of histidine decarboxylase (HDC) and the synthesis of histamine in leukemic cells. Blood. 2006 Nov 15;108(10):3538-47. doi: 10.1182/blood-2005-12-028456. Epub 2006 Jul 18.
30 Cytotoxicity of 34 FDA approved small-molecule kinase inhibitors in primary rat and human hepatocytes. Toxicol Lett. 2018 Jul;291:138-148. doi: 10.1016/j.toxlet.2018.04.010. Epub 2018 Apr 12.
31 Biologically active neutrophil chemokine pattern in tonsillitis.Clin Exp Immunol. 2004 Mar;135(3):511-8. doi: 10.1111/j.1365-2249.2003.02390.x.