General Information of Drug (ID: DMDO279)

Drug Name
Phenprocoumon
Synonyms
Falithiom; Falithrom; Fencumar; Fenprocoumona; Fenprocumon; Fenprocumone; Liquamar; Marcoumar; Marcumar; Marcuphen; Phenprocoumalol; Phenprocoumarol; Phenprocoumarole; Phenprocoumone; Phenprocoumonum; Phenprocumone; Phenprocumonum; Phenprogramma; Phenylpropylhydroxycumarinum; Fenprocumone [DCIT]; Hexal Brand of Phenprocoumon; Roche Brand of Phenprocoumon; Worwag Brand of Phenprocoumon; U29342; Falithrom (TN); Fenprocoumona [INN-Spanish]; Liquamar (TN); Marcoumar (TN); Marcumar (TN); Phenprocoumone [INN-French]; Phenprocoumonum [INN-Latin]; Ro 1-4849; Phenprocoumon (USAN/INN); Phenprocoumon [USAN:INN:BAN]; 2-hydroxy-3-(1-phenylpropyl)chromen-4-one; 3-(1'-Phenyl-propyl)-4-oxycoumarin; 3-(1'-Phenyl-propyl)-4-oxycoumarin [German]; 3-(1-Phenylpropyl)-4-hydroxycoumarin; 3-(alpha-Ethylbenzyl)-4-hydroxycoumarin; 3-(alpha-Phenylpropyl)-4-hydroxycoumarin; 4-Hydroxy-3-(1-phenylpropyl)-2H-1-benzopyran-2-one; 4-Hydroxy-3-(1-phenylpropyl)-2H-chromen-2-one
Indication
Disease Entry ICD 11 Status REF
Thrombosis DB61-GB90 Approved [1], [2], [3]
Therapeutic Class
Anticoagulants
Drug Type
Small molecular drug
Structure
3D MOL 2D MOL
#Ro5 Violations (Lipinski): 0 Molecular Weight (mw) 280.3
Topological Polar Surface Area (xlogp) 3.6
Rotatable Bond Count (rotbonds) 3
Hydrogen Bond Donor Count (hbonddonor) 1
Hydrogen Bond Acceptor Count (hbondacc) 3
ADMET Property
Bioavailability
The bioavailability of drug is 100% [4]
Clearance
The drug present in the plasma can be removed from the body at the rate of 0.02 mL/min/kg [5]
Half-life
The concentration or amount of drug in body reduced by one-half in 5 - 6 days [5]
Metabolism
The drug is metabolized via the hepatic microsomal enzymes (cytochrome P-450) to inactive hydroxylated metabolites (predominant route) and by reductases to reduced metabolites [4]
MRTD
The Maximum Recommended Therapeutic Dose (MRTD) of drug that ensured maximising efficacy and moderate side effect is 1.42691 micromolar/kg/day [6]
Unbound Fraction
The unbound fraction of drug in plasma is 0.57% [5]
Vd
Fluid volume that would be required to contain the amount of drug present in the body at the same concentration as in the plasma 0.2 L/kg [5]
Chemical Identifiers
Formula
C18H16O3
IUPAC Name
4-hydroxy-3-(1-phenylpropyl)chromen-2-one
Canonical SMILES
CCC(C1=CC=CC=C1)C2=C(C3=CC=CC=C3OC2=O)O
InChI
InChI=1S/C18H16O3/c1-2-13(12-8-4-3-5-9-12)16-17(19)14-10-6-7-11-15(14)21-18(16)20/h3-11,13,19H,2H2,1H3
InChIKey
DQDAYGNAKTZFIW-UHFFFAOYSA-N
Cross-matching ID
PubChem CID
54680692
ChEBI ID
CHEBI:50438
CAS Number
435-97-2
DrugBank ID
DB00946
TTD ID
D0QV5T
VARIDT ID
DR01279
INTEDE ID
DR1279

Molecular Interaction Atlas of This Drug


Drug Therapeutic Target (DTT)
DTT Name DTT ID UniProt ID MOA REF
Vitamin K epoxide reductase complex 1 (VKORC1) TTEUC8H VKOR1_HUMAN Inhibitor [7]

Drug Transporter (DTP)
DTP Name DTP ID UniProt ID MOA REF
P-glycoprotein 1 (ABCB1) DTUGYRD MDR1_HUMAN Substrate [8]

Drug-Metabolizing Enzyme (DME)
DME Name DME ID UniProt ID MOA REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Substrate [9]
Cytochrome P450 2C9 (CYP2C9)
Main DME
DE5IED8 CP2C9_HUMAN Substrate [10]
Cytochrome P450 2C8 (CYP2C8) DES5XRU CP2C8_HUMAN Substrate [9]
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This Drug

References

1 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 6839).
2 Drugs@FDA. U.S. Food and Drug Administration. U.S. Department of Health & Human Services. 2015
3 FDA Approved Drug Products from FDA Official Website. 2009. Application Number: (NDA) 011228.
4 FDA approval: ado-trastuzumab emtansine for the treatment of patients with HER2-positive metastatic breast cancer. Clin Cancer Res. 2014 Sep 1;20(17):4436-41.
5 Trend Analysis of a Database of Intravenous Pharmacokinetic Parameters in Humans for 1352 Drug Compounds
6 Estimating the safe starting dose in phase I clinical trials and no observed effect level based on QSAR modeling of the human maximum recommended daily dose
7 [Oral anticoagulation and pharmacogenetics: importance in the clinical setting]. Rev Med Suisse. 2007 Sep 12;3(124):2030, 2033-4, 2036.
8 Role of P-glycoprotein in the uptake/efflux transport of oral vitamin K antagonists and rivaroxaban through the Caco-2 cell model. Basic Clin Pharmacol Toxicol. 2013 Oct;113(4):259-65.
9 Identification of cytochromes P450 2C9 and 3A4 as the major catalysts of phenprocoumon hydroxylation in vitro. Eur J Clin Pharmacol. 2004 May;60(3):173-82.
10 Genetic polymorphisms of cytochrome P450 2C9 causing reduced phenprocoumon (S)-7-hydroxylation in vitro and in vivo. Xenobiotica. 2004 Sep;34(9):847-59.
11 Expression levels and activation of a PXR variant are directly related to drug resistance in osteosarcoma cell lines. Cancer. 2007 Mar 1;109(5):957-65.
12 Contribution of human hepatic cytochrome P450 isoforms to regioselective hydroxylation of steroid hormones. Xenobiotica. 1998 Jun;28(6):539-47.
13 Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J Pharmacol Exp Ther. 2004 Sep;310(3):1062-75.
14 Isoform-specific regulation of cytochromes P450 expression by estradiol and progesterone. Drug Metab Dispos. 2013 Feb;41(2):263-9.
15 Metabolic interactions between acetaminophen (paracetamol) and two flavonoids, luteolin and quercetin, through in-vitro inhibition studies. J Pharm Pharmacol. 2017 Dec;69(12):1762-1772.
16 Potent mechanism-based inhibition of CYP3A4 by imatinib explains its liability to interact with CYP3A4 substrates. Br J Pharmacol. 2012 Apr;165(8):2787-98.
17 Effects of morin on the pharmacokinetics of etoposide in rats. Biopharm Drug Dispos. 2007 Apr;28(3):151-6.
18 The metabolism of zidovudine by human liver microsomes in vitro: formation of 3'-amino-3'-deoxythymidine. Biochem Pharmacol. 1994 Jul 19;48(2):267-76.
19 Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem. 2009;16(27):3480-675.
20 Roles of cytochromes P450 1A2, 2A6, and 2C8 in 5-fluorouracil formation from tegafur, an anticancer prodrug, in human liver microsomes. Drug Metab Dispos. 2000 Dec;28(12):1457-63.
21 Role of cytochrome P450 2C8 in drug metabolism and interactions. Pharmacol Rev. 2016 Jan;68(1):168-241.
22 Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev. 2002 Feb-May;34(1-2):83-448.
23 Differential expression and function of CYP2C isoforms in human intestine and liver. Pharmacogenetics. 2003 Sep;13(9):565-75.
24 Analysis of human cytochrome P450 2C8 substrate specificity using a substrate pharmacophore and site-directed mutants. Biochemistry. 2004 Dec 14;43(49):15379-92.
25 Interaction of sorafenib and cytochrome P450 isoenzymes in patients with advanced melanoma: a phase I/II pharmacokinetic interaction study. Cancer Chemother Pharmacol. 2011 Nov;68(5):1111-8.
26 PharmGKB summary: mycophenolic acid pathway. Pharmacogenet Genomics. 2014 Jan;24(1):73-9.
27 Possible involvement of multiple human cytochrome P450 isoforms in the liver metabolism of propofol. Br J Anaesth. 1998 Jun;80(6):788-95.
28 Progesterone and testosterone hydroxylation by cytochromes P450 2C19, 2C9, and 3A4 in human liver microsomes. Arch Biochem Biophys. 1997 Oct 1;346(1):161-9.
29 Tamoxifen inhibits cytochrome P450 2C9 activity in breast cancer patients. J Chemother. 2006 Aug;18(4):421-4.
30 Characterization of the oxidative metabolites of 17beta-estradiol and estrone formed by 15 selectively expressed human cytochrome p450 isoforms. Endocrinology. 2003 Aug;144(8):3382-98.
31 Drug-drug interactions with imatinib: an observational study. Medicine (Baltimore). 2016 Oct;95(40):e5076.
32 Drug interactions with calcium channel blockers: possible involvement of metabolite-intermediate complexation with CYP3A. Drug Metab Dispos. 2000 Feb;28(2):125-30.
33 New insights into the structural features and functional relevance of human cytochrome P450 2C9. Part I. Curr Drug Metab. 2009 Dec;10(10):1075-126.
34 A potential role for the estrogen-metabolizing cytochrome P450 enzymes in human breast carcinogenesis. Breast Cancer Res Treat. 2003 Dec;82(3):191-7.
35 A mechanistic approach to antiepileptic drug interactions. Ann Pharmacother. 1998 May;32(5):554-63.
36 Human intestinal transporter database: QSAR modeling and virtual profiling of drug uptake, efflux and interactions. Pharm Res. 2013 Apr;30(4):996-1007.
37 MDR1 (ABCB1) G1199A (Ser400Asn) polymorphism alters transepithelial permeability and sensitivity to anticancer agents. Cancer Chemother Pharmacol. 2009 Jun;64(1):183-8.
38 Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: A review of the past decade. Cancer Lett. 2016 Jan 1;370(1):153-64.
39 Folate transporter expression decreases in the human placenta throughout pregnancy and in pre-eclampsia. Pregnancy Hypertens. 2012 Apr;2(2):123-31.
40 Comparative studies on in vitro methods for evaluating in vivo function of MDR1 P-glycoprotein. Pharm Res. 2001 Dec;18(12):1660-8.
41 Antiestrogens and steroid hormones: substrates of the human P-glycoprotein. Biochem Pharmacol. 1994 Jul 19;48(2):287-92.
42 Association of genetic polymorphisms in the influx transporter SLCO1B3 and the efflux transporter ABCB1 with imatinib pharmacokinetics in patients with chronic myeloid leukemia. Ther Drug Monit. 2011 Apr;33(2):244-50.
43 Evaluation of a reverse-hybridization StripAssay for the detection of genetic polymorphisms leading to acenocoumarol sensitivity. Mol Biol Rep. 2010 Apr;37(4):1693-7.
44 Vitamin K antagonism of coumarin intoxication in the rat. Thromb Haemost. 1986 Apr 30;55(2):235-9.
45 Tecarfarin, a novel vitamin K reductase antagonist, is not affected by CYP2C9 and CYP3A4 inhibition following concomitant administration of fluconazole in healthy participants. J Clin Pharmacol. 2011Apr;51(4):561-74.