General Information of Drug Off-Target (DOT) (ID: OT3XMZU3)

DOT Name Leucine-rich repeat transmembrane protein FLRT3 (FLRT3)
Synonyms Fibronectin-like domain-containing leucine-rich transmembrane protein 3
Gene Name FLRT3
Related Disease
Attention deficit hyperactivity disorder ( )
Congenital hypogonadotropic hypogonadism ( )
Neuralgia ( )
Kallmann syndrome ( )
Hypogonadotropic hypogonadism 21 with or without anosmia ( )
UniProt ID
FLRT3_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
5CMN; 5CMP; 6JBU
Pfam ID
PF13855
Sequence
MISAAWSIFLIGTKIGLFLQVAPLSVMAKSCPSVCRCDAGFIYCNDRFLTSIPTGIPEDA
TTLYLQNNQINNAGIPSDLKNLLKVERIYLYHNSLDEFPTNLPKYVKELHLQENNIRTIT
YDSLSKIPYLEELHLDDNSVSAVSIEEGAFRDSNYLRLLFLSRNHLSTIPWGLPRTIEEL
RLDDNRISTISSPSLQGLTSLKRLVLDGNLLNNHGLGDKVFFNLVNLTELSLVRNSLTAA
PVNLPGTNLRKLYLQDNHINRVPPNAFSYLRQLYRLDMSNNNLSNLPQGIFDDLDNITQL
ILRNNPWYCGCKMKWVRDWLQSLPVKVNVRGLMCQAPEKVRGMAIKDLNAELFDCKDSGI
VSTIQITTAIPNTVYPAQGQWPAPVTKQPDIKNPKLTKDHQTTGSPSRKTITITVKSVTS
DTIHISWKLALPMTALRLSWLKLGHSPAFGSITETIVTGERSEYLVTALEPDSPYKVCMV
PMETSNLYLFDETPVCIETETAPLRMYNPTTTLNREQEKEPYKNPNLPLAAIIGGAVALV
TIALLALVCWYVHRNGSLFSRNCAYSKGRRRKDDYAEAGTKKDNSILEIRETSFQMLPIS
NEPISKEEFVIHTIFPPNGMNLYKNNHSESSSNRSYRDSGIPDSDHSHS
Function
Functions in cell-cell adhesion, cell migration and axon guidance, exerting an attractive or repulsive role depending on its interaction partners. Plays a role in the spatial organization of brain neurons. Plays a role in vascular development in the retina. Plays a role in cell-cell adhesion via its interaction with ADGRL3 and probably also other latrophilins that are expressed at the surface of adjacent cells. Interaction with the intracellular domain of ROBO1 mediates axon attraction towards cells expressing NTN1. Mediates axon growth cone collapse and plays a repulsive role in neuron guidance via its interaction with UNC5B, and possibly also other UNC-5 family members. Promotes neurite outgrowth (in vitro). Mediates cell-cell contacts that promote an increase both in neurite number and in neurite length. Plays a role in the regulation of the density of glutamaergic synapses. Plays a role in fibroblast growth factor-mediated signaling cascades. Required for normal morphogenesis during embryonic development, but not for normal embryonic patterning. Required for normal ventral closure, headfold fusion and definitive endoderm migration during embryonic development. Required for the formation of a normal basement membrane and the maintenance of a normal anterior visceral endoderm during embryonic development.
Tissue Specificity Expressed in kidney, brain, pancreas, skeletal muscle, lung, liver, placenta, and heart.
Reactome Pathway
Downstream signaling of activated FGFR1 (R-HSA-5654687 )
Signaling by ROBO receptors (R-HSA-376176 )

Molecular Interaction Atlas (MIA) of This DOT

5 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Attention deficit hyperactivity disorder DISL8MX9 Strong Genetic Variation [1]
Congenital hypogonadotropic hypogonadism DISEV092 Strong Biomarker [2]
Neuralgia DISWO58J Strong Biomarker [3]
Kallmann syndrome DISO3HDG Supportive Autosomal dominant [2]
Hypogonadotropic hypogonadism 21 with or without anosmia DISTTKY0 Limited Unknown [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Mitoxantrone DMM39BF Approved Leucine-rich repeat transmembrane protein FLRT3 (FLRT3) affects the response to substance of Mitoxantrone. [26]
------------------------------------------------------------------------------------
25 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Leucine-rich repeat transmembrane protein FLRT3 (FLRT3). [4]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Leucine-rich repeat transmembrane protein FLRT3 (FLRT3). [5]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Leucine-rich repeat transmembrane protein FLRT3 (FLRT3). [6]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Leucine-rich repeat transmembrane protein FLRT3 (FLRT3). [7]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Leucine-rich repeat transmembrane protein FLRT3 (FLRT3). [8]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Leucine-rich repeat transmembrane protein FLRT3 (FLRT3). [9]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Leucine-rich repeat transmembrane protein FLRT3 (FLRT3). [10]
Quercetin DM3NC4M Approved Quercetin increases the expression of Leucine-rich repeat transmembrane protein FLRT3 (FLRT3). [11]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Leucine-rich repeat transmembrane protein FLRT3 (FLRT3). [12]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Leucine-rich repeat transmembrane protein FLRT3 (FLRT3). [13]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Leucine-rich repeat transmembrane protein FLRT3 (FLRT3). [14]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Leucine-rich repeat transmembrane protein FLRT3 (FLRT3). [15]
Selenium DM25CGV Approved Selenium decreases the expression of Leucine-rich repeat transmembrane protein FLRT3 (FLRT3). [16]
Menadione DMSJDTY Approved Menadione affects the expression of Leucine-rich repeat transmembrane protein FLRT3 (FLRT3). [14]
Niclosamide DMJAGXQ Approved Niclosamide decreases the expression of Leucine-rich repeat transmembrane protein FLRT3 (FLRT3). [17]
Amphotericin B DMTAJQE Approved Amphotericin B decreases the expression of Leucine-rich repeat transmembrane protein FLRT3 (FLRT3). [18]
Cocaine DMSOX7I Approved Cocaine increases the expression of Leucine-rich repeat transmembrane protein FLRT3 (FLRT3). [19]
Tocopherol DMBIJZ6 Phase 2 Tocopherol decreases the expression of Leucine-rich repeat transmembrane protein FLRT3 (FLRT3). [16]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Leucine-rich repeat transmembrane protein FLRT3 (FLRT3). [20]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Leucine-rich repeat transmembrane protein FLRT3 (FLRT3). [21]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Leucine-rich repeat transmembrane protein FLRT3 (FLRT3). [22]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Leucine-rich repeat transmembrane protein FLRT3 (FLRT3). [4]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Leucine-rich repeat transmembrane protein FLRT3 (FLRT3). [23]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Leucine-rich repeat transmembrane protein FLRT3 (FLRT3). [24]
GALLICACID DM6Y3A0 Investigative GALLICACID increases the expression of Leucine-rich repeat transmembrane protein FLRT3 (FLRT3). [25]
------------------------------------------------------------------------------------
⏷ Show the Full List of 25 Drug(s)

References

1 Striatal transcriptome of a mouse model of ADHD reveals a pattern of synaptic remodeling.PLoS One. 2018 Aug 15;13(8):e0201553. doi: 10.1371/journal.pone.0201553. eCollection 2018.
2 Mutations in FGF17, IL17RD, DUSP6, SPRY4, and FLRT3 are identified in individuals with congenital hypogonadotropic hypogonadism. Am J Hum Genet. 2013 May 2;92(5):725-43. doi: 10.1016/j.ajhg.2013.04.008.
3 Increased Expression of Fibronectin Leucine-Rich Transmembrane Protein 3 in the Dorsal Root Ganglion Induces Neuropathic Pain in Rats.J Neurosci. 2019 Sep 18;39(38):7615-7627. doi: 10.1523/JNEUROSCI.0295-19.2019. Epub 2019 Jul 25.
4 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
5 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
6 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
7 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
8 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
9 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
10 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
11 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
12 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
13 Gene expression profile induced by arsenic trioxide in chronic lymphocytic leukemia cells reveals a central role for heme oxygenase-1 in apoptosis and regulation of matrix metalloproteinase-9. Oncotarget. 2016 Dec 13;7(50):83359-83377.
14 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
15 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
16 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
17 Mitochondrial Uncoupling Induces Epigenome Remodeling and Promotes Differentiation in Neuroblastoma. Cancer Res. 2023 Jan 18;83(2):181-194. doi: 10.1158/0008-5472.CAN-22-1029.
18 Differential expression of microRNAs and their predicted targets in renal cells exposed to amphotericin B and its complex with copper (II) ions. Toxicol Mech Methods. 2017 Sep;27(7):537-543. doi: 10.1080/15376516.2017.1333554. Epub 2017 Jun 8.
19 Gene expression in human hippocampus from cocaine abusers identifies genes which regulate extracellular matrix remodeling. PLoS One. 2007 Nov 14;2(11):e1187. doi: 10.1371/journal.pone.0001187.
20 Effect of benzo[a]pyrene on proliferation and metastasis of oral squamous cell carcinoma cells: A transcriptome analysis based on RNA-seq. Environ Toxicol. 2022 Nov;37(11):2589-2604. doi: 10.1002/tox.23621. Epub 2022 Jul 23.
21 CCAT1 is an enhancer-templated RNA that predicts BET sensitivity in colorectal cancer. J Clin Invest. 2016 Feb;126(2):639-52.
22 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
23 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.
24 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
25 Gene expression profile analysis of gallic acid-induced cell death process. Sci Rep. 2021 Aug 18;11(1):16743. doi: 10.1038/s41598-021-96174-1.
26 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.